Dans une lettre à Jean-Pierre Serre datée du 16 août 1964, Alexandre Grothendieck, en spéculant sur la possibilité d’une théorie des motifs, définissait un objet qu’on appelle aujourd’hui l’anneau de Grothendieck des variétés, qui a joué un rôle de plus en plus important en géométrie algébrique dans les trente dernières années. Cet anneau est engendré par les variétés algébriques (c’est-à-dire, des objets géométriques donnés par les lieux de zéros communs de systèmes polynomiaux), regardées à isomorphisme et découpage près. Après une introduction générale de l’anneau de Grothendieck des variétés et […]
Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.
ATTENTION : exceptionnellement un LUNDI
Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.
Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.
Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.