Designed and built with care, filled with creative elements

Top

Grandes matrices aléatoires

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

L'exposé présentera un petit panorama autour de l'asymptotique de matrices aléatoires dont la taille croît vers l'infini, à la fois au niveau de la mesure spectrale et du comportement individuel des valeurs propres (valeurs propres extrêmes, espacements...). Les théorèmes récents d'universalité au bord et à l'intérieur du spectre seront évoqués.

Montée et redescente au dessus des surfaces de Châtelet

Salle W

Les torseurs versels ont été introduits par J.-L. Colliot-Thélène et J.-J. Sansuc pour étudier le principe de Hasse et l'approximation faible sur des variétés telles que les surfaces de Châtelet. Dans un travail avec Tim Browning et Régis de la Bretèche, nous avons utilisé ces torseurs comme première étape pour démontrer le principe de Batyrev et Manin pour certaines de ces surfaces. Le but de cet exposé est de présentercette étape de la preuve.

Zeros of p-adic forms

Salle W

Artin conjectured that any form of degree d over a p-adic field should have a non-trivial zero as soon as the number of variables exceeds d2. There are related statements for systems of forms.The talk will give a review of Artin's conjecture, with particular emphasis on recent workconcerning systems of quadratic forms.

Sur les sections des familles d’hypersurfaces de grand degré

amphi Perrin en face de l'IHP

Grauert et Manin ont montré qu'une famille non-isotriviale de courbes compactes hyperboliques n'a qu'un nombre fini de sections. Nous montrerons un analogue pour une famille nonbirationnellement isotriviale d'hypersurfaces de grand degré et de grande variabilité d'un espaceprojectif complexe : il existe un fermé strict de l'espace total qui contient l'image de toutes les sections.