Designed and built with care, filled with creative elements

Top

Entire solutions to equivariant elliptic systems with variational structure

Chevaleret

We consider an elliptic system with variational structure. After making some general remarks, we focus on potentials that possess several global minima and are invariant under a finite reflection group G. We establish existence of G-equivariant entire solutions connecting the global minima.

Rigorous stability/bifurcation analysis for strong detonation waves

Chevaleret

We present recent results with B. Texier developing a rigorous nonlinear theory of stability and bifurcation of strong detonation waves of the full reacting Navier-Stokes (rNS) equations, based on natural spectral stability/bifurcation conditions. We discuss in parallel recent singular perturbation results showing that in the small viscosity limit these conditions reduce to the corresponding conditions for the ZND, or reacting Euler, equations that are more commonly studied in the detonation literature. This yields immediately numerical verification of the (rNS) conditions through the voluminous numerical literature on (ZND).

Unimodal bandits

Ecole normale supérieure salle W

We consider multiarmed bandit problems where the expected reward isunimodal over a partially ordered set of arms. In particular, thearms may belong to a continuous interval or correspond to verticesin a graph. We present efficient algorithms to minimize the regretin these bandit problems and also to detect abrupt changes in thereward distributions. The unimodality assumption has an importantadvantage: we can determine if a given arm is optimal by samplingthe possible directions around it. This property allows us toquickly find the optimal arm in a graph and detect changes. Notably,our method […]

Some regularity results for ultraparabolic equations

Institut Henri Poincaré - salle 314

I shall talk about some regularity results for the ultraparabolic equation, in particular, the C^{alpha}$ regularity of weak solutions. The problem arises from the Prandtl's boundary layer system under the Crocco transformation. I shall also report some recent results on the backward uniqueness of ultraparabolic equations.

Equations de Navier-Stokes

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Equations de Navier-Stokes

Plongements d’espaces homogènes sphériques sur un corps quelconque

Salle W

On étend la définition des espaces homogènes sphériques et de leurs plongements au cas d'un corps quelconque. On montre qu'à un plongement d'un espace homogène sphérique fixé X, on peut associer un éventail colorié stable par le groupe de Galois. On présente des exemples où cette correpondance est parfaite.

Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus d’une courbe

Salle W

Soit X une variété projective lisse sur in corps de nombres, fibrée au dessus d'une courbe C, à fibres géométriquement intègres. En supposant que les fibres d'un sous-ensemble hilbertien généralisé satisfont le principe de Hasse (resp. l'approximation faible) et la finitude du groupe de Tate-Schafarevitch de la jacobienne de C), on montre que l'obstruction de Brauer-Manin provenant de la courbe d'en bas est la seule au principe de Hasse (resp. à l'approximation faible) pour les zéros-cycles de degré 1 sur X.