Designed and built with care, filled with creative elements

Top

Definability in the infinitesimal subgroup of a simple compact Lie group

ENS Salle W

Joint work with Kobi Peterzil.Let G be a simple compact Lie group, for example G=SO_3(R). We consider the structure of definable sets in the subgroup G^{00} of infinitesimal elements. In an aleph_0-saturated elementary extension of the real field, G^{00} is the inverse image of the identity under the standard part map, so is definable in the corresponding valued field. We show that the pure group structure on G^{00} recovers the valued field, making this a bi-interpretation. Hence the definable sets in the group are as rich as possible.

Tame open core and small groups in pairs of topological geometric structures

ENS Salle W

Using the group configuration theorem, Hrushovski and Pillay showed that the law of a group definable in the reals or the p-adics is locally an algebraic group law, up to definable isomorphism. There are some natural expansions of these two theories of fields, by adding a predicate for a dense substructure, for example the algebraic reals or the algebraic p-adics. We will present an overview on some of the features of these expansions, and particularly on the characterisation of open definable sets as well as of groups definable in the […]

Density of the union of Cartan subgroups of o-minimal groups

Sophie Germain salle 2015

Let G be a group. A subgroup H of G is a Cartan subgroup ofG if H is a maximal nilpotent subgroup of G, and for every normal finiteindex subgroup X of H, X has finite index in its normalizer in G.We consider Cartan subgroups of definably connect groups definable inan o-minimal structure. In we proved that, in this context,Cartan subgroups of G exist, they are definable and they fall infinitely many conjugacy classes.In this talk I will prove that the union of the Cartan subgroups isdense in the group, […]

Phénomènes d’explosion pour des équations d’ondes quasi-linéaires

JUSSIEU Salle 15-16 309

On dispose de nombreux travaux traitant la formation de singularités pour des équations d'évolution non linéaires invariantes par scaling. Dans cet exposé, je présenterai l'approche qui consiste à construire des solutions qui explosent en temps fini par concentration du soliton. La première partie de l'exposé portera sur la stratégie générale de cette approche constructive. Les solitons étant au coeur de ces phénomènes, je débuterai le cours par un aperçu des ingrédients rentrant en jeu dans l'étude de deux types de solitons. Le premier en lien avec le problème de Yamabe […]

Après-midi de théorie des groupes

Salle W ENS

Tuesday, 22 January14.00-14.45 Bertrand Rémy (Ecole Polytechnique)15.00-15.45 Tom Hutchcroft (Cambridge)15.45-16.15 coffee break16.15-17.00 Pavel Zalesski (University of Brasilia)Bertrand Remy, Quasi-isometric invariance of continuous group Lp-cohomology, and first applications to vanishings (joint with Marc Bourdon)We show that the continuous L^p-cohomology of locally compact second countable groups is a quasi-isometric invariant. As an application, we prove partial results supporting a positive answer to a question asked by M. Gromov, suggesting a classical behaviour of continuous L^p-cohomology of simple real Lie groups. In addition to quasi-isometric invariance, the ingredients are a spectral sequence argument […]

Spectrum of the profinite completion of the integers

Sophie Germain salle 1016

Using ultraproducts, I will describe the spectrum of the profinite completion of the integers and of the finite adeles over the rationals.The final aim is to describe the structure sheaf of these structures.Joint work with Margarita Otero and Angus Macintyre.

Groupes d’automorphismes et Propriété (T)

Sophie Germain salle 2015

Nous présenterons une preuve de la Propriété (T) de Kazhdan pour les groupes d'automorphismes de structures métriques aleph_0-catégoriques. Ceci généralise des résultats précédents de Bekka (pour le groupe unitaire) et de Evans et Tsankov (pour les groupes pro-oligomorphes), sans besoin de faire appel à des résultats de classification de représentations unitaires. En effet, l'argument est purement modèle-théorique et basé sur des principes de la stabilité locale.

Compter les surfaces

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

http://www.math.ens.fr/~mourrat/desmaths_eynard.pdf

Viscosity solutions for nonlocal elliptic equations

JUSSIEU Salle 15-16 309

In the first part of this talk, we introduce the notion of viscosity solutions for nonlocal elliptic equations and revisit the two main tools used in the analysis of such problems, that is comparison principle and regularity. In the second part, we describe the use of these concepts in the study of periodic homogenization for nonlocal equations.

Après-midi de théorie des groupes

Salle W

14.00-14.45 Joshua Frisch (Caltech) Proximal actions, Strong amenability, and Infinite conjugacy class groups15.00-15.45 Andy Zucker (Paris VII) Bernoulli Disjointness15.45-16.15 coffee break16.15-17.00 Christophe Garban (Université Lyon 1) Inverted orbits of exclusion processes, diffuse-extensive-amenability and (non-?)amenability of the interval exchanges

Unlikely intersections with E x CM curves in A_2

ENS Salle W

The Zilber-Pink conjecture predicts that an algebraic curve in A_2 has only finitely many intersections with the special curves, unless it is contained in a proper special subvariety.Under a large Galois orbits hypothesis, we prove the finiteness of the intersection with the special curves parametrising abelian surfaces isogenous to the product of two elliptic curves, at least one of which has complex multiplication. Furthermore, we show that this large Galois orbits hypothesis holds for curves satisfying a condition on their intersection with the boundary of the Baily--Borel compactification of A_2.More […]

Tame topology and Hodge theory.

ENS Salle W

I will explain how tame topology seems the natural setting for variational Hodge theory. As an instance I will sketch a new proof of the algebraicity of the components of the Hodge locus, a celebrated result of Cattani-Deligne-Kaplan (joint work with Bakker and Tsimerman).