Owen Sabatin. Fonction zêta de Selberg et théorie spectrale du laplacien
Salle WOn s’intéresse à la géométrie d’une surface S hyperbolique de genre g avec n pointes, uniformisée par le disque de Poincaré. La surface est munie d’une métrique hyperbolique à courbure négative, et on peut chercher à étudier les longueurs l(γ) des géodésiques fermées γ. On a alors un analogue à la fonction zêta de Riemann, appelée fonction zêta de Selberg, définie à partir des longueurs des géodésiques, qui est holomorphe sur un demi-plan {s|ℜ(s) > k}. Elle peut s’étendre analytiquement à tout le plan complexe et satisfait une équation fonctionnelle […]