Designed and built with care, filled with creative elements

Top

A free boundary problem for thin films

IHP salle 201

The lubrication approximation leads to a fourth order degenerate equation modeling the evolution of small viscous droplets on a solid support (the thin film equation). Along the contact line (the free boundary), the solution must satisfy a gradient condition (contact angle condition).While many existence and regularity results are known for solutions with zero contact angle, the only existence result with non-zero contact angle is due to F. Otto and only holds in some particular framework (Hele-Shaw cell). We consider a singular perturbation approach to generalize Otto's result.

Arithmetic of cubic surfaces

Salle W

We will look at the arithmitic properties of cubic surfaces. The main focus will be on 27 the lines and the Galois action on them.Different descriptions of the moduli space of cubic surfaces are used to construct several Galois groups.Finally we will inspect the Manin conjecture for these surfaces.

K3 surfaces and their Picard groups

Salle W

The goal of this talk is to report on a project to compute the Picard rank for certain K3 surfaces. The methods are based on reduction modulo p. They will be explained in some detail and examples will be given.At the end of the talk, a statistical test will be presented showing that for each K3 surface in two large samples, suitable primes may be found and the Picard rank may be determined. The samples are motivated by classical families considered by 19th century geometers.

Introduction à la correspondance de Langlands p-adique locale

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Soit K un corps. La correspondance de Langlands est une bijection entre deux types d’objets mathématiques : des représentations du groupe Gln(K) des matrices inversibles de dimension n à coefficients dans K et des représentations, dites galoisiennes, qui décrivent l’arithmétique du corps K. Dans cet exposé, nous présentons la version p-adique de cette correspondance, version qui n’existe que pour n=2 et K le corps des nombres p-adiques. De multiples stratégies sont développées pour traiter les autres cas. C’est l’objet du programme de Langlands p-adique.

On the divisibility of the Tate-Shafarevich group of an elliptic curve in the Weil-Châtelet group

Salle W

In this talk I will report on progress on the following two questions, the first posed by Cassels in 1961 and the second considered by Bashmakov in 1974. The first question is whether the elements of the Tate-Shafarevich group are infinitely divisible when considered as elements of the Weil-Châtelet group. The second question concerns the intersection of the Tate-Shafarevich group with the maximal divisible subgroup of the Weil-Chatelet group. This is joint work with Mirela Ciperiani.