Designed and built with care, filled with creative elements

Top
Image Alt

La recherche

  /  La recherche

Activités scientifiques du département

Le DMA est à la fois un département d'enseignement et un département de recherche. Cette structuration originale vise notamment à mettre très tôt les élèves au plus près de la recherche en train de se faire.

Publications

L'essentielle de publications des membres du département, des thèses et des HDR qui y sont soutenues sont disponibles sur le serveur HAL.

  • 14 November 2025 hal-05365151 publication

    The problem of the geodynamo is simple to formulate (Why does the Earth possess a magnetic field?), yet it proves surprisingly hard to address. As with most geophysical flows, the fluid flow of molten iron in the Earth's core is strongly influenced by the Coriolis effect. Because the liquid is electrically conducting, it is also strongly influenced by the Lorentz force. The balance is unusual in that, whereas each of these effects considered separately tends to impede the flow, the magnetic field in the Earth's core relaxes the effect of the rapid rotation and allows the development of a large-scale flow in the core that in turn regenerates the field. This review covers some recent developments regarding the interplay between rotation and magnetic fields and how it affects the flow in the Earth's core.

    Emmanuel Dormy

  • 11 November 2025 hal-05358734 pré-publication

    46 pages

    Gaëtan Chenevier, Wee Teck Gan

  • 22 September 2025 tel-05273265 thèse

    Here are seemingly unrelated problems: computing rational homotopy groups of spheres in rational homotopy theory, purity in algebraic geometry, Koszul duality for the category of a reductive group in representation theory, splitting Drinfeld space's de Rham complex in the p-adic Langlands program, deformation quantization of Poisson manifolds in mathematical physics. And yet, all of them boil down to the same question: formality. A differential graded algebraic structure A (e.g. an associative algebra, a Lie algebra, a Pre-Calabi-Yau algebra, etc.) is formal if it is related to its homology H(A) by a zig-zag of quasi-isomorphisms preserving the algebraic structure. This thesis develops obstruction classes allowing to prove formality results. On the one hand, it incorporates aforementioned results into a single theory. On the other hand, it provides tools to study these questions in cases little studied hitherto: over any coefficient ring and for algebraic structures with several outputs: algebras encoded by properads.

    Coline Emprin

Les actualités de la recherche

Annonce de conférences, congrès et autres événements scientifiques.

annales_ens

Annales de l’ENS

Les Annales scientifiques de l’École normale supérieure publient 6 fascicules par an. Elles sont éditées par la Société mathématique de France depuis 2008.