Designed and built with care, filled with creative elements

Top
Image Alt

La recherche

  /  La recherche

Activités scientifiques du département

Le DMA est à la fois un département d'enseignement et un département de recherche. Cette structuration originale vise notamment à mettre très tôt les élèves au plus près de la recherche en train de se faire.

Publications

L'essentielle de publications des membres du département, des thèses et des HDR qui y sont soutenues sont disponibles sur le serveur HAL.

  • 11 June 2025 hal-05108418 publication

    While conservation laws in gradient flow training dynamics are well understood for (mostly shallow) ReLU and linear networks, their study remains largely unexplored for more practical architectures. This paper bridges this gap by deriving and analyzing conservation laws for modern architectures, with a focus on convolutional ResNets and Transformer networks. For this, we first show that basic building blocks such as ReLU (or linear) shallow networks, with or without convolution, have easily expressed conservation laws, and no more than the known ones. In the case of a single attention layer, we also completely describe all conservation laws, and we show that residual blocks have the same conservation laws as the same block without skip connection. We then introduce the notion of conservation laws that depend only on a subset of parameters (corresponding e.g. to a pair of consecutive layers, to a residual block, or to an attention layer). We demonstrate that the characterization of such laws can be reduced to the analysis of the corresponding building block in isolation. Finally, we examine how these newly discovered conservation principles, initially established in the continuous gradient flow regime, persist under discrete optimization dynamics, particularly in the context of Stochastic Gradient Descent (SGD).

    Sibylle Marcotte, Rémi Gribonval, Gabriel Peyré

  • 27 May 2025 hal-05086703 pré-publication

    Guidance is a cornerstone of modern diffusion models, playing a pivotal role in conditional generation and enhancing the quality of unconditional samples. However, current approaches to guidance scheduling--determining the appropriate guidance weight--are largely heuristic and lack a solid theoretical foundation. This work addresses these limitations on two fronts. First, we provide a theoretical formalization that precisely characterizes the relationship between guidance strength and classifier confidence. Second, building on this insight, we introduce a stochastic optimal control framework that casts guidance scheduling as an adaptive optimization problem. In this formulation, guidance strength is not fixed but dynamically selected based on time, the current sample, and the conditioning class, either independently or in combination. By solving the resulting control problem, we establish a principled foundation for more effective guidance in diffusion models.

    Iskander Azangulov, Peter Potaptchik, Qinyu Li, Eddie Aamari, George Deligiannidis, Judith Rousseau

  • 16 April 2025 tel-05036943 thèse

    This thesis intends to make a contribution to the theories of algebraic cycles and moduli spaces over the real numbers. In the study of the subvarieties of a projective algebraic variety, smooth over the field of real numbers, the cycle class map between the Chow ring and the equivariant cohomology ring plays an important role. The image of the cycle class map remains difficult to describe in general; we study this group in detail in the case of real abelian varieties. To do so, we construct integral Fourier transforms on Chow rings of abelian varieties over any field. They allow us to prove the integral Hodge conjecture for one-cycles on complex Jacobian varieties, and the real integral Hodge conjecture modulo torsion for real abelian threefolds. For the theory of real algebraic cycles, and for several other purposes in real algebraic geometry, it is useful to have moduli spaces of real varieties to our disposal. Insight in the topology of a real moduli space provides insight in the geometry of a real variety that defines a point in it, and the other way around. In the moduli space of real abelian varieties, as well as in the Torelli locus contained in it, we prove density of the set of moduli points attached to abelian varieties containing an abelian subvariety of fixed dimension. Moreover, we provide the moduli space of stable real binary quintics with a hyperbolic orbifold structure, compatible with the period map on the locus of smooth quintics. This structure identifies the moduli space of stable real binary quintics with a non-arithmetic ball quotient.

    Olivier De Gaay Fortman

Les actualités de la recherche

Annonce de conférences, congrès et autres événements scientifiques.

annales_ens

Annales de l’ENS

Les Annales scientifiques de l’École normale supérieure publient 6 fascicules par an. Elles sont éditées par la Société mathématique de France depuis 2008.