Designed and built with care, filled with creative elements

Top
Image Alt

La recherche

  /  La recherche

Activités scientifiques du département

Le DMA est à la fois un département d'enseignement et un département de recherche. Cette structuration originale vise notamment à mettre très tôt les élèves au plus près de la recherche en train de se faire.

Publications

L'essentielle de publications des membres du département, des thèses et des HDR qui y sont soutenues sont disponibles sur le serveur HAL.

  • 2 November 2025 hal-05342515 publication

    Igor Kortchemski, Leonard Vetter

  • 5 November 2025 hal-05349214 pré-publication

    We have reached a point where many bio foundation models exist across 4 different scales, from molecules to molecular chains, cells, and tissues. However, while related in many ways, these models do not yet bridge these scales. We present a framework and architecture called Xpressor that enables cross-scale learning by (1) using a novel cross-attention mechanism to compress high-dimensional gene representations into lower-dimensional cell-state vectors, and (2) implementing a multi-scale fine-tuning approach that allows cell models to leverage and adapt protein-level representations. Using a cell Foundation Model as an example, we demonstrate that our architecture improves model performance across multiple tasks, including cell-type prediction (+12%) and embedding quality (+8%). Together, these advances represent first steps toward models that can understad and bridge different scales of biological organization.

    Jeremie Kalfon, Laura Cantini, Gabriel Peyre

  • 22 September 2025 tel-05273265 thèse

    Here are seemingly unrelated problems: computing rational homotopy groups of spheres in rational homotopy theory, purity in algebraic geometry, Koszul duality for the category of a reductive group in representation theory, splitting Drinfeld space's de Rham complex in the p-adic Langlands program, deformation quantization of Poisson manifolds in mathematical physics. And yet, all of them boil down to the same question: formality. A differential graded algebraic structure A (e.g. an associative algebra, a Lie algebra, a Pre-Calabi-Yau algebra, etc.) is formal if it is related to its homology H(A) by a zig-zag of quasi-isomorphisms preserving the algebraic structure. This thesis develops obstruction classes allowing to prove formality results. On the one hand, it incorporates aforementioned results into a single theory. On the other hand, it provides tools to study these questions in cases little studied hitherto: over any coefficient ring and for algebraic structures with several outputs: algebras encoded by properads.

    Coline Emprin

Les actualités de la recherche

Annonce de conférences, congrès et autres événements scientifiques.

annales_ens

Annales de l’ENS

Les Annales scientifiques de l’École normale supérieure publient 6 fascicules par an. Elles sont éditées par la Société mathématique de France depuis 2008.