Designed and built with care, filled with creative elements

Top

Exponential sums modulo powers of primes, singularity theory, and local global principles

The theme of the talk is around the theory of Igusa's local zeta functions, his broader program on local global principles, and recent progress on these via singularity theory and the minimal model program with M. Mustata and K. H. Nguyen. I will also present some new open questions that push Igusa's program further, and partial evidence obtained with K. H. Nguyen.

Some remarks on complex analytic functions in a definable context

ENS Salle W

We fix an o-minimal expansion of the real field, M say. Definabilitynotions are with respect to M. Let F = {f_x : x in X} be a definable familyof (single valued) complex analytic functions, each one having domain somedisk, D_x say, in ?, where the parameter space X is a definable subset of ?^mfor some m. We present some finiteness theorems for such families F whichare uniform in parameters and give some applications.We also speculate on the notion of “definable” Riemann surface.

Constructing pseudo-algebraically closed fields

ENS Salle W

A field K is called pseudo-algebraically closed (PAC) if every absolutely irreducible variety defined over K has a K-rational point. These fields were introduced by Ax in his characterization of pseudo-finite fields and have since become an important object of study in both model theory and field arithmetic. We will explain how the analysis of a PAC field often reduces to questions about the model theory of the absolute group and describe how these reductions combine with a graph-coding construction of Cherlin, van den Dries, and Macintyre together with to […]

Théories non-équationnelles

Une théorie est équationnelle, si toute formule est combination booléenne d'équations. Une équation est une formule telle que la famille d'intersections finies d'instances n'admet aucune chaine infinie décroissante. Toute théorie équationnelle est stable, mais la réciproque n'est pas vraie : Sela ainsi que Müller-Sklinos ont montré que le groupe libre non-abélien n'est pas équationnel. Malgré tout, on connaît peu d'exemples de théories stables non-équationnelles.Dans cet exposé, nous présenterons un travail en commun avec Martin Ziegler, où nous exhiberons une infinité de nouvelles théories stables non-équationnelles, à partir du pseudo-espace coloré […]

Ensembles IP et ultraproduits de groupes finis

Sophie Germain Salle 2020

Une sous-partie d'un groupe infini est IP si elle contient tous les produits finis (sans répétitions) d'un sous-ensemble infini. Le célèbre théorème de Hindman affirme que, pour toute coloration finie des entiers positifs, il existe un ensemble IP monochromatique. Au delà du cas abélien, Bergelson et Tao ont repris un travail de Gowers pour montrer qu'une sous-partie `large' dans un ultraproduit de groupes finis simples non-abéliens est IP.Dans un travail en commun avec D. Palacin (Freiburg), nous allons donner dans cet exposé une démonstration alternative du résultat précédent, avec des […]

Complex Cellular Structures

Zoom

Real semialgebraic sets admit so-called cellular decomposition, i.e. representation as a union of convenient semialgebraic images of standard cubes. The Gromov-Yomdin Lemma (later generalized by Pila and Wilkie) proves that the maps could be chosen of C^r-smooth norm at most one, and the number of such maps is uniformly bounded for finite-dimensional families. This number was not effectively bounded by Yomdin or Gromov, but itnecessarily grows as r ? ?. It turns out there is a natural obstruction to a naive holomorphic complexification of this result related to the natural […]

Tame geometry and diophantine approximation

Zoom

Tame geometry is the study of structures where the definable sets admit finite complexity. Around 15 years ago Pila and Wilkie discovered a deep connection between tame geometry and diophantine approximation, in the form of asymptotic estimates on the number of rational points in a tame set (as a function of height). This later led to deep applications in diophantine geometry, functional transcendence and Hodge theory.I will describe some conjectures and a long-term project around a more effective form of tame geometry, suited for improving the quality of the diophantine […]

Une matinée de théorie de groupes

Zoom: https://us02web.zoom.us/j/86850693514

https://us02web.zoom.us/j/86850693514The password is answer to the following question: What is the degree of the standard Cayely graph on 107 generators?09.00-09.45 Koji Fujiwara (Kyoto), The rates of growth in a hyperbolic group10.00-10.45 Macarena Arenas (Cambridge), Linear isoperimetric functions for surfaces in hyperbolic groups11.15-12.00 Indira Chatterji (Nice), Tangent bundles on hyperbolic spaces and proper actions on Lp spaces

Cohomology of algebraic varieties over non-archimedean fields

Zoom

I will report on a joint work with Mário Edmundo and Jinhe Ye in which we introduced a sheaf cohomology theory for algebraic varieties over non-archimedean fields based on Hrushovski-Loeser spaces. After informally framing our main results with respect to classical statements, I will discuss some details of our construction and the main difficulties arising in this new context. If time allows, I will further explain how our results allow us to recover results of V. Berkovich on the sheaf cohomology of the analytification of an algebraic variety over a […]

The étale-open topology

Zoom

Fix an abstract field K. For each K-variety V, we will define an étale-open topology on the set V(K) of rational points of V. This notion uniformly recovers (1) the Zariski topology on V(K) when K is algebraically closed, (2) the analytic topology on V(K) when K is the real numbers, (3) the valuation topology on V(K) when K is almost any henselian field. On pseudo-finite fields, the étale-open topology seems to be new, and has some interesting properties.The étale-open topology is mostly of interest when K is large (also […]

Belles paires of valued fields and analytification

Zoom

In their work, Hrushovski and Loeser proposed the space V̂ of generically stable types concentrating on V to study the homotopy type of the Berkovich analytification of V. An important feature of V̂ is that it is canonically identified as a projective limit of definable sets in ACVF, which grants them tools from model theory. In this talk, we will give a brief introduction to this object and present an alternative approach to internalize various spaces of definable types, motivated by Poizat's work on belles paires of stable theories. Several […]

Après-midi de théorie de groupes

Zoom: https://us02web.zoom.us/j/83180342864

https://us02web.zoom.us/j/83180342864The password is answer to the following question: What is the degree of the standard Cayely graph on 107 generators?14.00-14.45 Alessandro Sisto (Heriot-Watt), Cubulation of hulls and bicombings15.00-15.45 Thomas Haettel (Montpellier), The coarse Helly property, hierarchical hyperbolicity and semihyperbolicity16.15-17.00 Mark Hagen (Bristol), Wallspaces, the Behrstock inequality, and l_1 metrics onasymptotic cones