Designed and built with care, filled with creative elements

Top

Existential theories of henselian fields, parameters welcome

Sophie Germain salle 1016

The first-order theories of local fields of positive characteristic, i.e. fields of Laurent series over finite fields, are far less well understood than their characteristic zero analogues: the fields of real, complex and p-adic numbers. On the other hand, the existential theory of an equicharacteristic henselian valued field in the language of valued fields is controlled by the existential theory of its residue field. One is decidable if and only if the other is decidable. When we add a parameter to the language, things get more complicated. Denef and Schoutens […]

Complexity of l-adic sheaves

To a complex of l-adic sheaves on a quasi-projective variety one associate an integer, its complexity. The main result on the complexity is that it is continuous with tensor product, pullback and pushforward, providing effective version of the constructibility theorems in l-adic cohomology. Another key feature is that the complexity bounds the dimensions of the cohomology groups of the complex. This can be used to prove equidistribution results for exponential sums over finite fields. This is due to Will Sawin, written up in collaboration with Javier Fresán and Emmanuel Kowalski.

Skew-invariant curves and algebraic independence

A σ-variety over a difference field (K,σ) is a pair (X,φ) consisting of an algebraic variety X over K and φ:X → X^σ is a regular map from X to its transform Xσ under σ. A subvariety Y ⊆ X is skew-invariant if φ(Y) ⊆ Y^σ. In earlier work with Alice Medvedev we gave a procedure to describe skew-invariant varieties of σ-varieties of the form (𝔸^n,φ) where φ(x_1,...,x_n) = (P_1(x_1),...,P_n(x_n)). The most important case, from which the others may be deduced, is that of n = 2. In the present […]

Sharp o-minimality: towards an arithmetically tame geometry

Salle W (ENS) et Zoom

Over the last 15 years a remarkable link between o-minimality and algebraic/arithmetic geometry has been unfolding following the discovery of Pila-Wilkie's counting theorem and its applications around unlikely intersections, functional transcendence etc. While the counting theorem is nearly optimal in general, Wilkie has conjectured a much sharper form in the structure R_exp. There is a folklore expectation that such sharper bounds should hold in structures "coming from geometry", but for lack of a general formalism explicit conjectures have been made only for specific structures. I will describe a refinement of […]

Le théorème du corps gauche de Zilber / Zilber’s Skew-Field Theorem (joint with Frank Wagner)

Sophie Germain salle 1016.

Le théorème du corps est l'observation qu'un groupe de rang de Morley fini connexe, résoluble, et non nilpotent, interprète un corps infini. Par d'autres résultats classiques, le corps est commutatif et même algébriquement clos. Le théorème du corps est souvent vu comme corollaire du «théorème d'engendrement par des indécomposables» mais c'est une erreur car il en est indépendant. Il a quelques variantes, des théorèmes de linéarisation d'actions de groupes. Je donnerai un énoncé qui généralise naturellement tous les résultats «à la Zilber». C'est un résultat de linéarisation de bimodules, dans […]

Cercles isométriques mais contractiles dans les cônes asymptotiques des groupes

salle 1016 Sophie Germain

La contractilité de tous les cercles dans les cônes asymptotiques d’un groupe G de type fini implique que G est de présentation finie avec fonction de Dehn au plus polynomiale.  Le distorsion métrique de tous ces cercles est une propriété plus forte qui implique que G est fortement raccourci (“strongly shortcut”).  La propriété fortement raccourci est satisfaite par diverses familles de groupes de courbure négative ou nulle, notamment les groupes hyperboliques, CAT(0), Helly, et systoliques, mais elle est aussi satisfaite par le groupe de Heisenberg discret.     Je discuterai d'un […]

On the Borel complexity of modules

Sophie Germain salle 1016.

We prove that among all countable, commutative rings R (with unit) the theory of R-modules is not Borel complete if and only if there are only countably many non-isomorphic countable R-modules. From the proof, we obtain a succinct proof that the class of torsion free abelian groups is Borel complete. The results above follow from some general machinery that we expect to have applications in other algebraic settings. Here, we also show that for an arbitrary countable ring R, the class of left R-modules equipped with an endomorphism is Borel […]

Anthony Várilly Alvarado, raconte-moi comment utiliser la géométrie pour construire des codes pour le stockage à grande échelle !

En salle W au DMA, ou sur Zoom

Motivated by large-scale storage problems around data loss, a budding branch of coding theory has surfaced in the last decade or so, centered around locally recoverable codes.  A code is a subset of a finite-dimensional vector space over a finite field, chosen carefully so that all its elements are locally isolated, as if they were "repelling" each other.  Each vector in a code is called a code word.  Locally recoverable codes have the property that individual entries in a code word are functions of other entries in the same word.  If an entry is accidentally lost, […]

Un après-midi de théorie des groupes

14:00-17:00 Salle W

Le séminaire sera dans salle W et retransmis sur Zoom : https://us02web.zoom.us/j/83927866358 Meeting ID: 839 2786 6358 Mot de passe: G est un Graphe de Cayley du groupe libre à 107 générateurs. Quel est le degré de ce graphe? Tapez le numéro à trois chiffres comme un mot de passe. 14.00 - 14.45 Yury Neretin (University of Vienna), "Infinite symmetric groups and cobordisms of triangulated surfaces" 15.00 - 15.45 Matteo Tarocchi (University of Milano-Biocca), "Thompson-like groups acting on fractals" 16.00 - 16.45 Rachel Skipper (ENS), "Maximal Subgroups of Thompson's group […]

Un après-midi de théorie des groupes

14:00-17:00 Salle W

Le séminaire sera dans salle W et retransmis sur Zoom : https://us02web.zoom.us/j/86001581637 Meeting ID: 860 0158 1637 Mot de passe: G est un Graphe de Cayley du groupe libre à 107 générateurs. Quel est le degré de ce graphe? Tapez le numéro à trois chiffres comme un mot de passe. 14.00 -- 14.45 Anne Lonjou (UPV/EHU, University of the Basque Country), "Cremona goup over finite fields and Neretin groups" 15.00 -- 15.45 Eduardo Silva (ENS, Paris), "Dead ends on wreath products and lamplighter groups" 16.00 -- 16.45 Alina Vdovina (CUNY, New York), […]

Taming perfectoid fields

IHP salle 01

Tilting perfectoid fields, developed by Scholze, allows to transfer results between certain henselian fields of mixed characteristic and their positive characteristic counterparts and vice versa. We present a model-theoretic approach to tilting via ultraproducts, which allows to transfer many first-order properties between a perfectoid field and its tilt (and conversely). In particular, our method yields a simple proof of the Fontaine-Wintenberger Theorem which states that the absolute Galois group of a perfectoid field and its tilt are canonically isomorphic. A key ingredient in our approach is an Ax-Kochen/Ershov principle for […]

Abundance of strongly minimal autonomous differential equations

IHP salle 01

In several classical families of differential equations such as the Painlevé families (Nagloo, Pillay) or finite dimensional families of Schwarzian differential equations (Blazquez-Sanz, Casale, Freitag, Nagloo), the following picture has been obtained regarding the transcendence properties of their solutions: - (Strong minimality): outside of an exceptional set of parameters, the corresponding differential equations are strongly minimal, - (Geometric triviality): algebraic independence of several solutions is controlled by pairwise algebraic independence outside of this exceptional set of parameters, - (Multidimensionality): the differential equations defined by generic independent parameters are orthogonal. Are […]