Designed and built with care, filled with creative elements

Top

NIPn fields part 2: random hypergraphs and NIPn CHIPS transfer

salle 1016 Sophie Germain

A core question in the model theory of fields is to understand how combinatorial patterns and algebraic properties interact. The study of NIPn fields, which can't express the edge relation of random n-hypergraph, is linked to henselianity. In this talk, we use Chernikov and Hils conditions to obtain transfer in some situations, that is, under some algebraic assumptions, it is enough to know that the residue field of a henselian valued field is NIPn in order to known that it is itself NIPn, and we discuss consequences on hypothetical strictly […]

Existentially closed measure-preserving actions of free groups

Sophie Germain salle 1016.

I will discuss a joint work with Alexander Berenstein and Ward Henson, in which we show that the theory of probability algebras with two automorphisms has a model completion, which moreover has quantifier elimination and is stable. We also exhibit two non-isomorphic (but approximately isomorphic) models of the model completion. More generally, we give a sufficient set of conditions for the axiomatizability (in continuous logic) of the existentially closed actions of a free group on a separably categorical, stable structure. I will also mention a number of open questions.

Najib Idrissi, raconte-moi les opérades !

En salle W au DMA, ou sur Zoom

Les opérades sont des objets qui gouvernent des catégories d'algèbres au sens large — par exemple, les algèbres associatives, les algèbres commutatives, ou les algèbres de Lie — qui sont habituellement définies par « opérations génératrices et relations ». Le but de cet exposé est d'introduire la théorie des opérades avec des exemples, et en particulier l'exemple fondateur des opérades des petits disques. J'expliquerai comment les opérades des petits disques permettent d'obtenir des invariants des variétés de deux façons duales : le calcul des plongements et l'homologie de factorisation.

Un après-midi de théorie des groupes

14:00-17:00 Salle W

Le séminaire sera dans salle W et retransmis sur Zoom : ZOOM: https://us02web.zoom.us/j/82070470538 ID: 820 7047 0538 Mot de passe: G est un Graphe de Cayley du groupe libre à 107 générateurs. Quel est le degré de ce graphe? Tapez le numéro à trois chiffres comme un mot de passe. 14.00 - 14.45 Marcin Sabok  (McGill University), "Hyperfiniteness at hyperbolic boundries" 15.00 - 15.45 Juan Paucar (Jussieu), "Coarse embeddings between locally compact groups and quantitative measured equivalence" 16.00 - 16.45 Josh Frisch (ENS), "Characteristic Measures and Minimal Subdynamics" Vous pourrez […]

Curve-excluding fields

salle 1016 Sophie Germain

Consider the class of fields with Char(K)=0 and x^4+y^4=1 has only 4 solutions in K, we show that this class has a model companion, which we denote by curve-excluding fields. Curve-excluding fields provides (counter)examples to various questions. Model theoretically, they are model complete and TP_2. Field theoretically, they are not large and unbounded. We will discuss other aspects such as decidability of such fields. This is joint work with Will Johnson and Erik Walsberg.

Interdefinability and compatibility in certain o-minimal expansions of the real field

Zoom

Let us say that a real function f is o-minimal if the expansion (R,f) of the real field by f is o-minimal. A function g is definable from f if g is definable in (R,f). Two o-minimal functions are compatible if there exists an o-minimal expansion M of the real field in which they are both definable. I will discuss the o-minimality, the interdefinability and the compatibility of two special functions, Euler's Gamma and Riemann's Zeta, restricted to the reals. If time allows it, I will present a general technique […]

Tameness beyond o-minimality (in expansions of the real ordered additive group)

Zoom

In his influential paper “Tameness in expansions of the real field” from the early 2000s, Chris Miller wrote: “ What might it mean for a first-order expansion of the field of real numbers to be tame or well behaved? In recent years, much attention has been paid by model theorists and real-analytic geometers to the o-minimal setting: expansions of the real field in which every definable set has finitely many connected components. But there are expansions of the real field that define sets with infinitely many connected components, yet are […]

Lie groups definable in o-minimal theories

Sophie Germain salle 1016.

In this talk we will work out a complete characterization of which Lie groups admit a “definable copy”. This is, characterize for which Lie groups G one can find a group H definable in an o-minimal expansion of the real field, and such that G and H are isomorphic. When the answer is positive, the definable copy H that we find is definable in the language of exponential ordered fields, and it is such that any Lie automorphism of H is definable.

Piecewise Interpretable Hilbert Spaces (II)

Sophie Germain salle 1016.

We continue the discussion of piecewise interpretable Hilbert spaces from the Monday seminar. We will prove the main structure theorem of `Piecewise Interpretable Hilbert Spaces' (C., Hrushovski) which analyses a scattered piecewise interpretable Hilbert space into asymptotically free subspaces. We will clarify the model theoretic content of this theorem, highlighting the roles of one-basedness and strong minimality. We will also study its representation theoretic content, establishing a connection with induced represetnations. We will see that this theorem generalises a theorem of Tsankov about unitary representations of oligomorphic groups. This is […]

Quasi-groupes de Frobenius dimensionnels

Sophie Germain salle 1016.

Dans cet exposé, nous présenterons une généralisation des groupes de Frobenius : les quasi-groupes de Frobenius. On dit qu'une paire de groupes C < G est un quasi-groupe de Frobenius si C est d'indice fini dans son normalisateur (dans G) et s'il satisfait la propriété TI, i.e, deux conjugués distincts de C s'intersectent trivialement. Du point de vue de la théorie des modèles, nous travaillerons dans un contexte où l'existence d'une bonne notion de dimension (finie) sur les ensembles définissables est assurée (ce qui englobe les univers rangés et les […]

Metric valued fields in continuous logic

Sophie Germain salle 1016.

By work of Itaï Ben Yaacov complete valued fields with value groups embedded in the real numbers can be viewed as metric structures in continuous logic. For technical reasons one has to consider the projective line over such a field rather than the field itself. In this talk we introduce the above setting and give a classification of the complete theories of metric valued fields in equicharacteristic 0 in terms of their residue field and value group. This can also be seen as an approximate Ax-Kochen-Ershov principle. If time permits, […]

Olivier de Gaay Fortman, raconte-moi la conjecture de Hodge entière !

En salle W au DMA, ou sur Zoom

La conjecture de Hodge reste une conjecture largement ouverte et mystérieuse. Dans cet exposé je parlerai d’un énoncé encore plus fort : la « Conjecture de Hodge Entière ». Bien que fausse en général, il est important de se demander pour quel type de variétés complexes projectives elle est vraie. Je la prouverai pour les classes de homologie de degré deux sur la jacobienne d’une courbe. Enfin, je parlerai de son analogue pour les variétés algébriques réelles: la « Conjecture de Hodge Entière Réelle ».