Designed and built with care, filled with creative elements

Top

Cyril Houdayer, raconte-moi la dynamique des fonctions de type positif des réseaux de rang supérieur !

DMA Salle W

Je présenterai des résultats d'existence et d'unicité de traces dans l'espace des fonctions de type positif des réseaux de rang supérieur. Je mentionnerai quelques applications à la théorie des représentations unitaires et à la structure de leurs C﹡-algèbres. Ces résultats fournissent des généralisations noncommutatives de théorèmes dus à Margulis, Stuck—Zimmer et Nevo—Zimmer.

Vlerë Mehmeti, raconte-moi l’uniformisation de Koebe–Mumford !

DMA Salle W

Koebe a démontré un résultat d'uniformisation pour les surfaces de Riemann compactes à travers les « groupes de Schottky ». Ce résultat a été étendu au cadre non archimédien par Mumford. J'expliquerai comment, en utilisant les « espaces de Berkovich », on peut mener une étude uniforme de tous ces objets et de leurs invariants associés.

Russel Avdek, tell me about the complex origins of mapping class relations !

DMA Salle W

I’ll talk about relations between products of Dehn twists along simple closed curves on an oriented surface F. We view these products as elements of the boundary-relative mapping class group of F. A famous example is the `lantern relation’, discovered by D. Johnson in the 70s by drawing pictures. I’ll describe how many such relations, such as the lantern, can be discovered by viewing F as a complex 1-manifold sitting inside of a complex 2-manifold as part of a `Lefschetz fibration’. Time permitting, I’ll mention higher-dimensional generalizations and open problems.

Quentin Gazda, raconte-moi les t-motifs d’Anderson !

DMA Salle W

En juin 1986, inspiré par les travaux de Drinfeld, G. Anderson publie un article fondamental intitulé « t-Motives », où il introduit les objets qui portent aujourd'hui son nom. Ce que l'on peut deviner au titre, c'est qu'Anderson y présente la contrepartie des motifs de Grothendieck en arithmétique des corps de fonctions, où Fq joue le rôle de Z. Pour autant, nulle justification n'est donnée quant au choix du nom, et je me considérerais comme un mathématicien accompli le jour où j'aurai pleinement compris cette analogie. Dans cet exposé, j'expliquerai […]

Simon André, raconte-moi le problème de Tarski !

DMA Salle W

Deux groupes sont dits élémentairement équivalents s'ils vérifient les mêmes énoncés du premier ordre, c'est-à-dire les mêmes énoncés mathématiques dont les variables désignent uniquement des éléments d'un groupe. Dans les années 40, Tarski a posé la question suivante : les groupes libres de rang au moins deux sont-ils élémentairement équivalents ? Cette question est longtemps restée ouverte, et ce n'est qu'au début des années 2000 qu'une réponse affirmative a finalement été apportée par Sela et par Kharlampovich et Myasnikov dans deux séries de travaux volumineuses. Dans mon exposé, je présenterai […]