Designed and built with care, filled with creative elements

Top

Tamagawa Numbers of Linear Algebraic Groups.

ENS Salle W

In 1981, Sansuc obtained a formula for Tamagawa numbers of reductive groups over number fields, modulo some then unknown results on the arithmetic of simply connected groups which have since been proven, particularly Weil's conjecture on Tamagawa numbers over number fields. One easily deduces that this same formula holds for all linear algebraic groups over number fields. Sansuc's method still works to treat reductive groups in the function field setting, thanks to the recent resolution of Weil's conjecture in the function field setting by Lurie and Gaitsgory. However, due to […]

Generic cohomology of function fields and birational anabelian geometry.

ENS Salle W

In this talk, I will discuss the so-called generic cohomology of a function field, which can be constructed using any suitable cohomology theory. While this object resembles Galois cohomology in many ways, there are subtle but important differences that give this object a more refined structure. I will focus primary on a new birational anabelian result which uses the Hodge-theoretic avatar of generic cohomology.

Mauvaises places pour l’obstruction de Brauer-Manin dans les espaces homogènes.

ENS Salle W

L'obstruction de Brauer-Manin explique (en partie) le défaut de densité des points rationnels d'une variété X dans le produit des points sur les différents complétés du corps de base. Conjecturalement, cette obstruction est la seule pour les variétés rationnellement connexes. Cela a pour conséquence l'existence d'un ensemble fini de mauvaises places en dehors desquelles on a en effet la densité souhaitée.Dans cet exposé, je montrerai comment décrire explicitement un tel ensemble de mauvaises places pour un espace homogène d'un groupe semisimple et simplement connexe à stabilisateurs finis. Cela passe par […]

L’espace adélique d’un tore sur un corps de fonctions.

ENS Salle W

Soient k un corps de caractéristique zéro et K le corps des fonctions d'une courbe X sur k. Soient T un K-tore, S un ensemble finide points fermés de X, et T(A,S) l'espace adélique de T hors de S. On démontre que l'ensemble des points rationnels T(K) estdiscret dans T(A,S), puis on calcule le quotient T(A,S)/T(K) en fonction de la cohomologie galoisienne de T dans les trois cassuivants : k algébriquement clos, k=C((t)), et k p-adique.

Autour d’une conjecture de Kato et Kuzumaki

ENS Salle W

En 1986, Kato et Kuzumaki ont émis des conjectures concernant les liensentre la dimension cohomologique des corps, la K-théorie de Milnor etles hypersurfaces projectives de petit degré. Ces conjectures sontfausses en toute généralité, mais elles restent ouvertes pour les corpsqui apparaissent usuellement en arithmétique et en géométrie algébrique.Dans cet exposé, je présenterai plusieurs résultats en lien avec lesconjectures de Kato et Kuzumaki pour les corps globaux et pour certainscorps de fonctions.

Au sujet d’une conjecture de Voskresenskii

ENS Salle W

Dans cette collaboration avec M. Florence, nous nous intéressons à la question de savoir quand les notions de rationalité et rationalité stable sont équivalentes. Nous traitons cette question dans le cas des tores, où une réponse positive est conjecturée par Voskresenskii. Pour une certaine classe de tores, cette conjecture est prouvée par Klyachko à l'aide de principes généraux. Nous donnons une nouvelle preuve explicite, en passant par des morphismes simples, menant à une application en cryptographie.

Recollement sur les courbes de Berkovich et principe local-global

ENS Salle W

Le recollement a été introduit dans un cadre géométrique pour traiter le problème inverse de Galois. Par la suite, la technique a été adaptée à un contexte plus algébrique par Harbater et Hartmann, puis développée par Harbater, Hartmann et Krashen. Nous commencerons par présenter une version de cette méthode sur les courbes de Berkovich. Ensuite, nous l'utiliserons pour démontrer un résultat local-global sur les corps de fonctions de courbes de Berkovich et finirons en expliquant l'application aux formes quadratiques. Nos résultats généralisent ceux de Harbater, Hartmann et Krashen.

Noyaux d’Albanese et groupes de Griffiths.

ENS Salle W

On décrit le groupe de Griffiths du produit d'une courbe C et d'une surface S comme un quotient du noyau d'Albanese de S pris sur le corps des fonctions de C. Quand C est une section hyperplane de S variant dans un pinceau de Lefschetz, une modification convenable du graphe du plongement de C dans S a une classe dans Griff(CxS). On démontre que cette classe est non nulle pour une infinité de membres du pinceau lorsque le corps de base k est de caractéristique 0, que le genre géométrique […]

Applications of Morava K-theory to algebraic groups and quadrics.

ENS Salle W

For a prime number p and a non-negative integer n we consider a Morava K-theory K(n) with the coefficient ring ?p. This is a universal oriented cohomology theory in the sense of Levine-Morel with a pn-typical formal group law which has height n modulo p. It turns out that K(n) is strongly related to cohomological invariants of algebraic groups in the sense of Serre. This is our starting point to compute the Chow groups of quadrics from the powers Im+2 of the fundamental ideal of the Witt ring up to […]

Painting Festival

Lorem ipsum oin gravida nibh vel veliauctor aliquenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsutis sem nibh id elit.

€5

Science Nature Day

Lorem ipsum oin gravida nibh vel veliauctor aliquenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsutis sem nibh id elit.

€15