Designed and built with care, filled with creative elements

Top

Cohomology jump loci

ENS Salle W Escalier B 4è étage Toits du DMA

Firstly, we propose and illustrate a refinement of Deligne?RTMs principle: every infinitesimal deformation problem over a field of characteristic zero with cohomology constraints is governed by a differential graded Lie algebra together with a module. Secondly, we review recent results about the global structure of cohomology jump loci of rank one local systems. Finally, we address future directions for other types of jump loci. All this is joint work with Botong Wang.

Maths pour tous

ENS salle IFRAF aile Rataud 4è étage

La trichotomie et les idéaux virtuels

Sophie Germain salle 1016

La théorie ACFA des corps aux différences existentiellement clos est supersimple. La trichotomie (de Zilber) est la propriété suivante des types minimaux : la prégéométrie donnée par acl sur l'ensemble des réalisations du type, est ou bien triviale (acl(A)=igcup_{a in A} acl(a))

Nouveaux exemples d’équations différentielles orthogonales aux constantes

Sophie Germain salle 1016

Depuis les travaux de Hrushovski sur la conjecture de Mordell-Lang, on sait que la propriété d'orthogonalité aux constantes est centrale dans les corps différentiellement clos puisqu'elle témoigne de la dichotomie entre types minimaux localement modulaires et non localement modulaires.Dans mon exposé, je présenterai un critère d'orthogonalité aux constantes pour les équations différentielles définies sur le corps des nombres réels. J'expliquerai ensuite comment appliquer ce critère à la construction d'équations différentielles orthogonales aux constantes

Sur la stabilité des fibrés tangents d’espaces hermitiens symétriques

ENS Salle W Escalier B 4è étage Toits du DMA

Soit Y un espace hermitien symétrique. Son fibré tangent est stable au sens de la pente par rapport à la polarisation canonique. Dans cet exposé, on s?RTMintéressera à la question de savoir en restriction à quelles sous-variétés X de Y ce fibré reste stable. Plusieurs résultats généraux montrent que c?RTMest le cas pour des intersections complètes de grand degré. Par un argument cohomologique, nous montrerons que c?RTMest en fait le cas pour toutes les intersections complètes de dimension au moins 3, en dehors d?RTMune liste de contre-exemples évidents. En dimension […]

Maths pour tous

ENS salle IFRAF aile Rataud 4è étage

Questions de décidabilité pour des théories de modules sur certains anneaux de Bézout

Sophie Germain salle 1016

Nous introduisons la notion de modules l-valués sur un anneau commutatif de Bézout. Un exemple étant l'anneau lui-même muni de l'application vers son groupe de divisibilité (une l-valuation). Dans ce cadre et supposant une propriété de divisiblité, nous montrons un résultat d'élimination relative des quantificateurs. Un des ingrédients est un théorème de Feferman-Vaught pour ces modules l-valués.On en déduit des résultats de décidabilité pour des théories de modules sur certains anneaux de Bézout dénombrables avec &#147

Mesure de Malher des polynômes à deux variables et théorie des noeuds

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

La mesure de Mahler d'un polynôme est sa moyenne géométrique sur le cercle unité. Cette quantité intervient naturellement dans des problèmes asymptotiques en théorie des nombres et en topologie. A partir de deux variables elle est très difficile à calculer, cependant j'expliquerai que le calcul est possible dans certains cas où le polynôme est associé à un noeud, c'est à dire une courbe fermée plongée dans R^3. Avec un peu de chance, cette mesure devient une quantité géométrique: le volume hyperbolique du noeud. 

Mixed-effect model for the spatiotemporal analysis of longitudinal manifold-valued data

IHP amphi Darboux

In this work, we propose a generic hierarchical spatiotemporal model for longitudinal manifold-valued data, which consist in repeated measurements over time for a group of individuals. This model allows us to estimate a group-average trajectory of progression, considered as a geodesic of a given Riemannian manifold. Individual trajectories of progression are obtained as random variations, which consist in parallel shifting and time reparametrization, of the average trajectory. These spatiotemporal transformations allow us to characterize changes in the direction and in the pace at which trajectories are followed. We propose to […]