Soient K un corps p-adique et G un groupe réductif sur son anneau des entiers A. Il découle des travaux de Bruhat-Tits que le sous-groupe compact G(A) de G(K) est maximal - ces sous-groupes sont dits hyperspéciaux. J'expliquerai une preuve de ce résultat où les arguments combinatoires de Bruhat-Tits sont remplacés par des considérations géométriques sur la variété des sous-groupes de Borel de G.
Au vu des progrès récents sur la structure des groupes algébriques linéaires sur un corps quelconque, il semble possible d'étudier leur groupe de Picard si le groupe de Picard des groupes algébriques unipotents (lisses, connexes) est assez bien connu. Un groupe unipotent (lisse, connexe) est extension itérée de formes du groupe additif. L'étude du groupe de Picard des formes du groupe additif est donc le premier pas vers l'étude du groupe de Picard des groupes algébriques linéaires sur un corps quelconque. Je vais présenter une borne explicite sur la torsion […]
A longueur de chaîne finie fixée N+2, nous axiomatisons la théorie commune à tous les groupes valués (Z, +, v, I), c'est-à-dire la théorie commune à toutes les structures obtenues en munissant le groupe additif de Z de prédicats pour N sous-groupes non nuls formant une chaîne strictement décroissante. Nous présentons un langage dans lequel tout modèle de cette théorie a l'élimination des quantificateurs. Ces deux résultats découlent d'un même lemme que l'on démontre en se ramenant à une paire de groupes (c'est-à-dire à une chaîne de valuation de longueur […]
Dans cet exposé, nous partirons à la découverte d'un modèle classique de physique statistique décrivant le comportement de polymères dans un solvant. Nous parlerons en particulier des liens profonds que ces modèles entretiennent avec la physique théorique et les autres branches des mathématiques.
Résumé : Le calcul paracontrollé est une théorie très récente, développée par Gubinelli-Imkeller-Perkowski pour l'étude d'EDP singulières / stochastiques. Cette approche, parallèle à celle de Hairer ('structures de régularité') est basée sur une décomposition à l'aide de paraproduits afin d'isoler exactement les termes singuliers. Dans une première partie, je présenterai tout d'abord les bases / prérequis sur les paraproduits et leur continuités dans les espaces de Hölder. Ceci nous permettra de comprendre la problèmatique et les difficultés apparaissant dans l'equation prototype: modèle parabolique d'Anderson (PAM) en dimension 2. Nous verrons […]
L’observation à un instant T du mouvement brownien d’un nuage de points indistinguables dont on connaît la position initiale conduit naturellement au problème de transport optimal de Monge, comme on le comprend dorénavant bien à la suite d’un article de Schrödinger datant des années 30. En poussant un peu plus loin l’analyse, à l’aide du principe de grandes déviations et de techniques de calcul des variations, on arrive à un système dynamique de particules liée au groupe symétrique, dont on peut ensuite dériver par analyse asymptotique le modèle de gravitation […]
Je présenterai un analogue motivique de la densité locale introduite par Kurdyka-Raby dans le cas réel et Cluckers-Comte-Loeser dans le cas p-adique. Celle-ci s'applique aux définissables dans une théorie de corps Henséliens modérée (au sens de Cluckers-Loeser), en caractéristique nulle et caractéristique résiduelle quelconque.Comme dans les cas sus-cités, il existe un cône tangent distingué sur lequel on peut calculer la densité si on lui attache des multiplicités, qu'on définit en décomposant l'ensemble définissable étudié en graphes de fonctions (localement) 1-Lipschitziennes. Cela implique en particulier une version uniforme du théorème de […]
On peut développer la théorie des modèles des variétés compactes complexes (CCM) avec automorphisme générique en analogie avec ce qui a été fait pour les corps aux différences existentiellement clos, autrement dit pour la théorie ACFA, dans des travaux importants de Chatzidakis et Hrushovski, entre autres. La théorie (du premier ordre) correspondante CCMA est supersimple, et on a la trichotomie de Zilber pour les types ?Roefini-dimensionnels?R de rang SU 1. Dans l'exposé, je vais présenter quelques résultats dans CCMA qui relèvent de la simplicité géométrique, et je vais discuter comment […]
Representation zeta functions of groups are Dirichlet-type generating functions enumerating the groups' finite-dimensional irreducible complex representations, possibly up to suitable equivalence relations. Under favourable conditions, these zeta functions satisfy Euler products whose factors are indexed by the places of number fields. I will discuss how p-adic integrals can be used to study these Euler products and how this sometimes allows us to capture some key analytic properties of representation zeta functions of groups.
On sait qu'un corps gauche stable de caractéristique p>0 est de dimension finie sur son centre. On conjecture que cette dimension vaut mêêe 1. Nous montrons qu'un corps non commutatif NIP de caractéristique p>0 est de dimension finie sur son centre, et donnons des exemples où cette dimension est différente de 1.