Algebraic structures and descent by symmetric monoidal categories and Deligne’s Theory
ENS Salle WLet W be a finite dimensional algebraic structure over a field K of characteristic zero (for example an algebra or a graded algebra). In this talk I will explain how to construct a symmetric monoidal category CW which is (up to some categorical data) a complete invariant of W. This category will be a form of RepK-G, where G is the algebraic group of automorphisms of W, over some subfield K0 of K. The field K0 can be thought of as the field of invariants of W, in a way […]