The geometry of combinatorially extreme algebraic configurations
ENS. salle WGiven a system of polynomial equations in m complex variables with solution set of dimension d, if we take finite subsets X_i of C each of size at most N, then the number of solutions to the system whose ith co-ordinate is in X_i is easily seen to be bounded as O(N^d). We ask: when can we improve on the exponent d in this bound?Hrushovski developed a formalism in which such questions become amenable to the tools of model theory, and in particular observed that incidence bounds of Szemeredi-Trotter type […]