Designed and built with care, filled with creative elements

Top

Flow of nonsmooth vector fields and applications

JUSSIEU Salle 15-16-309

At the beginning of the 1990s, DiPerna and Lions made a deep study on the connection between transport equations and ordinary differential equations. In particular, by proving existence and uniqueness of bounded solutions for transport equations with Sobolev vector-fields, they obtained (roughly speaking) existence and uniqueness of solutions for ODEs for a.e. initial condition. Ten years later, Ambrosio extended this result to BV vector fields, providing also a new axiomatization of the theory of flows, more based on probabilistic tools. In recent years, several new extensions have been obtained, that […]

A l’écoute du bruit. Le rôle des probabilités en imagerie.

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

 Les techniques d’imagerie classiques utilisent des ondes pour sonder un milieu inconnu. Ces ondes sont émises par des réseaux de sources et après propagation dans le milieu elles sont enregistrées par des réseaux de récepteurs. On peut mettre en place différentes modalités d'émission et réception d’ondes suivant les applications : contrôle non-destructif, imagerie médicale (échographie ultrasonore, etc), séismologie. Récemment, la possibilité d’utiliser des sources incontrôlées de bruit ambiant au lieu de sources actives contrôlées a attiré l’attention des chercheurs, en mathématiques pour des raisons théoriques profondes car l'idée qu'on puisse utiliser […]

Nonarchimedean globally valued fields

Sophie Germain salle 1021

In a joint research project with Itay Ben Yaacov, we study a class of fields enriched with a global structure tying together their various valuations by a product formula. This is an elementary class in the sense of continuous logic

The p-adic analog of Artin-Schreier Theorem – revisited (II)

Sophie Germain salle 1021

A famous Theorem by Artin and Schreier characterizes the real closed fields as being those fields which have a finite non-trivial absolute Galois group. Instances of p-adic analogs of this Theorem are known (Neukirch, Pop, Koenigsmann, Efrat), but there is much more to this story. Namely I will give a 'minimalistic' p-adic analog, which as in the Artin-Schreier Theorem, invoves only finite groups. This aspect of the story relates to the birational p-adic section conjecture, etc.

Counting points vs. counting extensions

Sophie Germain salle 1021

In this talk, I will explain how to relate the two counting problems in the title by generalizing the McKay correspondence to number-theoretic base fields, that is, local fields and number fields. Over local fields, generalizing the McKay correspondence by Batyrev and Denef-Loeser, one can relate stringy invariants of quotient varieties to mass formulas of extensions of local fields. Over number fields, using the local result and a heuristic argument, one can (less tightly than in the local case) relate Manin's conjecture on rational points of Fano varieties to Malle's […]

Le théorème de la baguette magique de Eskin-Mirzakhani-Mohammadi

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

 En utilisant un billard dans un plan avec des obstacles polygonaux périodiques comme exemple, je vais essayer de raconter le contexte et le contenu de la récente avancée majeure dans la dynamique dans les espaces de modules.