Les pavages par dominos du diamant aztèque ont été introduits au début des années 90 pour leur lien avec les matrices à signes alternants et les lambda-déterminants. Leur énumération est particulièrement élégante puisqu'il existe 2^{n(n+1)/2} pavages de taille n. Nous ferons une promenade combinatoire grâce à ces pavages: énumération, bijection, fonctions symétriques, génération aléatoire, formes limites... Cela nous emmènera vers des objets plus généraux: les pavages pentus, tout récemment définis par J. Bouttier, G. Chapuy et S. Corteel.
Les propriétés métriques des cartes (graphes plongés dans des surfaces)aléatoires ont été beaucoup étudiées ces dernières années. Dans cetexposé, je présenterai une approche combinatoire à ces questions,exploitant des bijections entre les cartes et certains arbres étiquetés.Grâce à un phénomène inattendu d'intégrabilité discrète, il estpossible de compter exactement les cartes ayant deux ou trois pointsmarqués à distances prescrites, et plus encore. Je parlerai ensuite desapplications probabilistes à l'étude de la carte brownienne (obtenuecomme limite d'échelle des cartes planaires aléatoires) et des cartesplanaires uniformes infinies (obtenues comme limites locales). Si letemps le […]