Il y a cent ans, pendant la préhistoire de la mécanique quantique, se posait la question de trouver des conditions de quantification pour décrire le spectre des atomes. Einstein en particulier s'est interrogé sur la quantification des systèmes qui ont la propriété d'ergodicité en mécanique classique. Nous ferons le point sur les principales conjectures liées à cette question, et décrirons quelques résultats récents, en insistant plus particulièrement sur la propriété appelée ergodicité quantique.
Il s'agira d'un exposé de survol de la théorie des espaces de Berkovich, préparatoire à l'exposé suivant.
Le recollement a été introduit dans un cadre géométrique pour traiter le problème inverse de Galois. Par la suite, la technique a été adaptée à un contexte plus algébrique par Harbater et Hartmann, puis développée par Harbater, Hartmann et Krashen. Nous commencerons par présenter une version de cette méthode sur les courbes de Berkovich. Ensuite, nous l'utiliserons pour démontrer un résultat local-global sur les corps de fonctions de courbes de Berkovich et finirons en expliquant l'application aux formes quadratiques. Nos résultats généralisent ceux de Harbater, Hartmann et Krashen.
14.00-14.45 Julien Cassaigne (IML, Marseille): A family of infinite words with complexity 2n+1 associated with a bidimensional continued fraction algorithm15.00-15.45 Milton Minervino (LaBRI, Bordeaux): Fractals de Rauzy et substitutions d'arbre15.45-16.15 coffee break16.45-17.00 Nathalie Aubrun (ENS, Lyon): Tilings problems on substitution orbits
Let f be a morphism of projective smooth varieties X, Y defined over the rationals. The conjecture by Colliot-Thélène under discussion gives (conjectural) sufficient conditions which imply that for almost all rational prime numbers p, the map f maps the p-adic points X(Q_p) surjectively onto Y(Q_p). The aim of the talk is to present some recent results by Denef, Skorobogatov et al
The dynamical Mordell-Lang conjecture in characteristic zero predicts that if f : X --> X is a map of algebraic varieties over a field K of characteristic zero, Y subset X is a closed subvariety and a in X(K) is a K-rational point on X, then the return set { n in N : f^n(a) in Y(K) } is a finite union of points and arithmetic progressions. For K a field of characteristic p > 0, it is necessary to allow for finite unions with sets of the form { […]
(Joint work with A. Chernikov)Let V subseteq C^3 be a complex variety of dimension 2.The Elekes-Szabo Theorem says that if V contains `too many' points on n x n x n Cartesian products then V has a special form: either V contains a cylinder over a curve or V is related to the graph of the multiplication of an algebraic group.In this talk we generalize the Elekes-Szabo Theorem to relations on strongly minimal sets interpretable in distal structures.