Pseudo-exponential maps of algebraic groups
ENS Salle WZilber conjectured that the complex exponential field (C
Zilber conjectured that the complex exponential field (C
Tout groupe constructible est algébrique (Weil - Van den Dries - Hrushovski). Pillay en 1997, puis Kowalski et Pillay en 2001, ont montré que la composante connexe de tout groupe constructible dans un corps différentiellement clos ou dans un corps avec un automorphisme générique, se plonge (à noyau fini près dans le second cas) dans un groupe algébrique. Ces démonstrations consistent à obtenir une configuration de groupe dans le pur corps algébriquement clos à partir de celle dans le corps enrichi. Pour les groupes définissables dans les corps colorés, corps […]
Je parlerai d'une description des fibres de Milnor d'une fonction polynomiale réelle qui passe par l'étude d'un ensemble de séries de Puiseux. On calcule l'homologie semialgébrique de cet ensemble, que l'on compare avec les fibres de Milnor topologiques.Il s'agit d'un travail en commun avec Masahiro Shiota, de Nagoya.
Soit X une surface algébrique de type K3 munie d'une involution non-symplectique. Nous classifions les fibrations elliptiques sur X sous certaines hypothèses sur l'involution non-symplectique. L'idée sous-jacente est de transférer le problème a une surface plus simple du point de vue géométrique. L'exposé portera sur une collaboration en cours avec Alice Garbagnati (Milan).
Let L/K be a normal extension of number fields. The Hasse normprinciple is a local-global principle for norms. It is satisfied if anyelement x of K is a norm from L whenever it is a norm locally at everyplace. For any fixed abelian Galois group G, we investigate the densityof G-extensions violating the Hasse norm principle, when G-extensionsare counted in order of their discriminant. This is joint work with DanLoughran and Rachel Newton.
Les versions locales en p des indices de Tits caractérisent les classes d'équivalences motiviques des groupes semisimples. L'objectif de cet exposé est de présenter deux travaux consécutifs à ce résultat. On proposera dans un premier temps la classification des algèbres à involution à équivalence motivique près (travail commun avec Anne Quéguiner et Maksim Zhykhovich). Par suite on abordera la détermination de l'ensemble des valeurs possibles de ces p-indices de Tits (travail en commun avec Skip Garibaldi). Cette étude exhaustive aboutit à un dictionnaire complet mêlant structures algébriques, invariants cohomologiques, algèbres […]
Let G be a split semisimple linear algebraic group over a field k, let Ebe a G-torsor over k. Let h be an algebraic oriented cohomology theory inthe sense of Levine-Morel (e.g.~Chow ring or an algebraic cobordism).Consider a twisted form E/B of the variety of Borel subgroups G/B.Following Brion's and Kostant-Kumar's results on equivariant cohomology offlag varieties we establish an equivalencebetween the h-motivic subcategory generated by E/B and the category ofprojective modules of certain Hecke-type algebra H which depends on theroot system of G, its isogeny class, on E, and […]
Des résultats classiques montrent comment, étant donné un système dynamique holomorphe, en déterminer une forme normale ou le plonger dans le flot d'un champ de vecteurs. Nous montrons comment étendre la version formelle de ces résultats à certaines transséries, et donnons quelques motivations en lien avec l'analyse fractale.
Le rang de Morley est une dimension combinatoire à valeurs ordinales sur la collection des ensembles définissables d'une théorie complète, qui coïncide avec la dimension de Zariski pour la théorie des corps algébriquement clos de caractéristique fixée.Le théorème d'interprétation du corps de Zilber permet de retrouver de façon définissable un corps algébriquement clos à partir d'un groupe abélien agissant par permutations sur un groupe abélien, le tout de rang de Morley fini. Or, une certaine configuration `interdite' risque d'apparaître, ce que l'on appelle un mauvais corps : un corps algébriquement […]
Un réseau euclidien est la donnée (E, | . |) d'un Z-module E isomorphe à Z^r, r in N, et d'une norme euclidienne | . | sur le R-espace vectoriel E_R simeq R^r qui lui est associé.En géométrie arithmétique, il s'avère naturel d'associer à un réseau euclidien un invariant dans R_+ défini au moyen d'une série thêta par la formule:h^0_?(E, | . |) := log sum_{v in E} e^{-pi|v|^2}.Dans cet exposé, je discuterai diverses propriétés, classiques et moins classiques, de cet invariant h^0_?. Notamment, j'expliquerai comment certaines de ses propriétés […]
ï/ootant donné un groupe G, un problème particulier qui nous intéresse est de trouver des enveloppes définissables de sous-groupes abéliens, nilpotents ou résolubles de G qui ayant les mêmes propriétés algébriques.Au cours des dernières décennies, il y a eu des progrès remarquables pour répondre a cette question pour des groupes qui satisfont certaines propriétés modèle-théoriques (théorie stable, dépendante, simple, etc.), ainsi que pour des groupes dont les centralisateurs satisfont certaines conditions de chaîne sur des centralisateur.Je présente ces résultats et donne des applications.