Courbes auto-évitantes et isomorphisme local
Sophie Germain salle 1016La notion d'isomorphisme local a été introduite pour l'étude des pavages apériodiques (pavages de penrose, quasicristaux...). On considère un espace euclidien de dimension finie. On identifie deux sous-ensembles si et seulement s'ils sont équivalents à translation près. On dit qu'un sous-ensemble E satisfait la propriété d'isomorphisme local si chaque partie bornée de E apparaît dans toute boule de rayon suffisamment grand. Deux sous-ensembles E,F sont localement isomorphes si toute partie bornée de l'un apparaît aussi dans l'autre.Deux pavages sont élémentairement équivalents si et seulement s'ils sont localement isomorphes. Les pavages […]