Tameness beyond o-minimality (in expansions of the real ordered additive group)
ZoomIn his influential paper “Tameness in expansions of the real field” from the early 2000s, Chris Miller wrote: “ What might it mean for a first-order expansion of the field of real numbers to be tame or well behaved? In recent years, much attention has been paid by model theorists and real-analytic geometers to the o-minimal setting: expansions of the real field in which every definable set has finitely many connected components. But there are expansions of the real field that define sets with infinitely many connected components, yet are […]