Designed and built with care, filled with creative elements

Top

Approximation forte pour les G-variétés contenant une orbite ouverte.

ENS Salle W

(Travail en collaboration avec Fei Xu). L'approximation forte avec l'obstruction de Brauer-Manin est définie par Colliot-Thélène et Xu. C'est une méthode pour étudier le principe local-global pour les points entiers. Dans cet exposé, soient k un corps de nombres, G un groupe linéaire sur k, X une G-variété lisse géométriquement intègre et U une G-orbite ouverte de X. Je parlerai de notre résultat dans le cas où U est isomorphe à G, et j'expliquerai sa démonstration. Ensuite, je parlerai de notre programme dans le cas où U est isomorphe à […]

Failures of weak approximation in families.

ENS Salle W

Given a family of varieties over a number field, we investigate the variation of the Brauer-Manin obstruction within the family. We give sufficient conditions on a family of varieties over P^n for 100% of the family to have a Brauer-Manin obstruction to weak approximation (this is joint work with Tim Browning and Dan Loughran).

Strong approximation and a conjecture of Harpaz and Wittenberg

ENS Salle W

In recent work Harpaz and Wittenberg established a general fibration theorem for the existence of rational points, conditional on a conjecture on locally split values of polynomials. In this talk we report on joint work with Tim Browning, which establishes a special case of their conjecture. We achieve this in proving strong approximation off a non-empty finite set of places for some varieties which are defined using norm forms.

La conjecture de Manin pour une famille de surfaces de Châtelet

ENS Salle W

Les conjectures de Manin et Peyre décrivent la répartition des points rationnels de hauteur bornée sur une variété de Fano en terme d'invariants géométriques de la variété. Suivant l'approche développée par La Bretèche, Browning et Peyre, on présentera au cours de cet exposé une preuve de la conjecture de Manin pour une surfaces de Châtelet définie comme modèle minimal propre et lisse d'une variété affine de la forme Y^2+Z^2=F(X,1) avec F polynôme à coefficients entiers de degré 4 sans racine multiple de la forme F=L_1L_2Q avec L_1 et L_2 deux […]

Dynamical spectra and rationality

ENS Salle W

Taking the irrationality problem for very general cubic n-folds as motivating example, we explore the possibility to use entropy-type invariants (dynamical degrees) and growth behaviour of Cremona multidegrees of birational self-maps for distinguishing birational automorphism groups of nearly rational varieties. We discuss some recent results (semi-continuity properties of dynamical degrees, computations of dynamical degrees for some compositions of reflections on cubic fourfolds, relation to algebraic subgroups of the birational automorphism groups) obtained jointly with H.-Chr. v. Bothmer and P. Sosna.

A geometric approach to a refinement of Manin’s conjecture

ENS Salle W

Manin's conjecture is a conjectural asymptotic formula for the counting function of rational points of bounded height on Fano varieties, however the conjecture admits many counterexamples due to covering families of subvarieties violating compatibility of Manin's conjecture. In this talk, I will explain how one can use the minimal model program and the boundedness of log Fano varieties to prove a sort of finiteness of such families. This is joint work with Brian Lehmann and Yuri Tschinkel.

Automorphismes extérieurs de groupes algébriques.

ENS Salle W

Pour un groupe algébrique linéaire absolument simple de type adjoint ou simplement connexe, une obstruction à l'existence d'automorphismes extérieurs provient de la classe de Tits. Dans cet exposé, basé sur un travail en collaboration avec Anne Quéguiner-Mathieu, on montre par des exemples que l'annulation de cette obstruction ne suffit pas à garantir l'existence d'automorphismes extérieurs. Ce résultat donne une réponse négative à une question de Garibaldi-Petersson.

Groupes algébriques commutatifs à isogénie près.

ENS Salle W

Les schémas en groupes commutatifs de type fini sur un corps k forment une catégorie abélienne C. Lorsque k est algébriquement clos, la dimension homologique de C vaut 1 en caractéristique nulle (Serre) et 2 en caractéristique positive (Oort). Sur un corps parfait, cette dimension peut être arbitrairement grande (Milne). L'exposé portera sur la catégorie quotient de C par la sous-catégorie F formée des schémas en groupes finis. On verra en particulier que la dimension homologique de C/F est 1 pour tout corps k.

Classification des fibrations elliptiques sur certaines surfaces K3.

ENS Salle W

Soit X une surface algébrique de type K3 munie d'une involution non-symplectique. Nous classifions les fibrations elliptiques sur X sous certaines hypothèses sur l'involution non-symplectique. L'idée sous-jacente est de transférer le problème a une surface plus simple du point de vue géométrique. L'exposé portera sur une collaboration en cours avec Alice Garbagnati (Milan).