Irrationalité et transcendance
ENS (amphithéâtre Galois sous la bibliothèque de mathématique)Un nombre complexe est dit transcendent s’il ne vérifie aucune équation polynomiale (non triviale) à coefficients rationnels. Tandis que “pratiquement tous” les nombres complexes sont transcendants, il est souvent difficile de décider si un certain nombre est transcendant. Pire, c’est déjà non trivial d'en donner un seul exemple explicite ! Ce n’est qu’au XIXème siècle que les résultats arrivent : Liouville (1844) montre que le réel \[ \sum_{n = 1}^\infty 10^{-n!} = 0.110001000000000000000001\dots \] est transcendant, Hermite (1873) que $e$ est transcendant, et Lindemann (1882) qu’étant donné un nombre complexe […]