La Théorie des modèles est une branche de la Logique Mathématique qui est encore mal connue malgré ses nombreuses applications en algèbre, théorie des nombres et géométrie. Le but de cet exposé est, en évitant le formalisme général abstrait, de présenter une introduction à la théorie des modèles à travers des exemples d'applications à l'algèbre. On s'appuiera sur la notion d'ultraproduit qui donne, par exemple, un sens concret et précis à l'énoncé: le corps des nombres complexes est la limite des clôtures algébriques des corps finis à p éléments quand […]
We prove a blow-up criterion in terms of the upper bound ofthe density for the strong solution to the 3-D compressible Navier-Stokesequations. The initial vacuum is allowed. The main ingredient of theproof is a priori estimate for an important quantity under the assumptionthat the density is upper bounded, whose divergence can be viewed asthe effective viscous flux.
Some twenty years ago Berenger introduced theremarkable method of perfectly matchedlayers for truncating to a rectangle, the computation ofsolutions of Maxwell's equations in 1+2 and 1+3 dimensionalspace time. Only recently have some of the fundamentalquestions concerning this method been resolved.For example the stability of the original methodand its perfection. We discuss the analysis of thisand related methods that are constructed to performbetter in variable coefficient settings where the perfectionof Berenger no longer holds. Research donewith Laurence Haplern, Sabrina Petit, and LudovicMetivier.
L'équation de la chaleur decouverte par J. Fourier au début du XIX ième siècle est aujourd'hui un thème de recherche à la croisée de l'analyse des E D P , de la géométrie , des probabilités.On découvrira quelques propriétés fondamentales des solutions de ces équations : à savoir qu'une condition initiale positive plus petite que 1 engendre une solution positive et plus petite que 1. Ceci permet de donner une interprétation probabiliste des solutions de l'équation de la chaleur et d'imaginer l'étude de l'équation de la chaleur sur d'autres espaces […]
On considère le système de Zakharov dans R3. Ce dernier décrit la propagationdes ondes de Langmuir dans un plasma faiblement magnétisé. Desarguments heuristiques et des simulations numériques ont montré que les solutionspeuvent devenir singulières au bout d?RTMun temps fini pour des donnéesinitiales assez ?R~grandes?RTM.Dans ce travail, on suppose que la solution explose en temps fini et onétablit une bonne inférieure pour le taux d?RTMexplosion de certaines normes deSobolev de la solution. L?RTManalyse est basée sur la théorie d?RTMexistence localede Ginibre-Tsutsumi-Velo (1997) et un argument de contradiction développépar Cazenave-Weissler (1990) dans […]