Titre à préciser
ENS (amphithéâtre Galois sous la bibliothèque de mathématique)Titre à préciser
Titre à préciser
Présentation de quatre articles acceptés à COLT'11:- Laëtitia Comminges (ENPC) --- Tight conditions for consistent variable selection in high dimensional nonparametric regression- Odalric-Ambrym Maillard (INRIA Lille) --- A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences- Vianney Perchet (ENS Cachan) --- Robust approachability and regret minimization in games with partial monitoring- Clément Levrard (Université Paris-Sud and Université Paris Pierre-et-Marie-Curie) --- Oracle inequalities for computationally budgeted model selectionNotez que quatre (cinq ?) autres articles écrits par des Français ont été acceptés cette année à COLT !
Nous présenterons une formule qui décrit une partie du groupe de Brauer d'un espace homogène sur corps de caractéristique nulle grâce à un groupe d'hypercohomologie galoisienne d'un complexe explicite associé à l'espace homogène. Ce travail généralise des résultats antérieurs sur le groupe de Brauer algébrique, dus entre autres à Sansuc, Kottwitz et Borovoi-van Hamel. Contrairement à ces résultats, le sous-groupe du groupe de Brauer considéré ici contient en général des éléments transcendants,qui sont nécessaires pour étudier l'arithmétique des espaces homogènes. En particulier, dans le cas d'un corps de nombres, le […]
On expliquera comment la théorie triangulée des motifs de Voevodsky permet d'associer des foncteurs dérivés à la cohomologie non ramifiée, et on en calculera quelques uns. Il: s'agit d'un travail commun avec Sujatha.
Les groupes de cohomologie non ramifiée, dont on sait qu'ils sont desinvariants birationnels des variétés projectives et lisses sur un corps,apparaissent comme les termes E_2^0p de la suite spectrale de Bloch-Ogus.Sur un corps de dimension cohomologique d, on va établir l'invariancebirationnelle de quelques autres termes de cette suite spectrale. Sur uncorps fini, on relie un de ces invariants avec le conoyau de l'applicationclasse de cycles l-adique étale pour les 1-cycles.
La théorie de Bruhat-Tits permet de classifier les groupes réductifs sur un corps valué hensélien et partant sur un corps F de séries formelles itérées sur un corps k. Si G/F est un groupe réductif, nous montrerons que le groupe de classes de R-équivalence G(F)/Rest isomorphe à un groupe H(k)/R où H est un groupe algébrique linéaire. Cette technique de spécialisation, issue des exemples de Platonov de groupes spéciaux linéaires, permet de construire de nouveaux cas de variétés de groupes non rationnelles.
Let X be a projective variety over a global field k. Consider the set of projective varieties X' that become isomorphic to X over every completion of k. It is natural to wonder if the set of such X', taken up to k-isomorphism, is finite. Mazur proved such a finiteness result conditional on the Tate--Shafarevich conjecture when k is a number field and the component group of the automorphism scheme of X satisfies some group-theoretic finiteness properties. When k is a global function field, several new difficulties arise. We explain […]
On se donne un jeu de 52 cartes. Chacun sait que si on mélange ce paquet suffisamment de fois, l’ordre des cartes finira par être aléatoire (uniforme). Mais combien de fois faut-il vraiment mélanger le paquet ?Cette question simple nous mènera vers une théorie mathématique très riche, qui mêle tout a la fois des probabilités, de la théorie de la représentation, ainsi que de l’analyse et de la géométrie. En particulier nous introduirons le phénomène de cutoff, découvert par Aldous et Diaconis dans les années 80, qui décrit une transition […]
We study first-order expansions of the real field that are restrained, i.e. that do not define the set of natural numbers. Being restrained is equivalent to several other notions of tameness.In particular: in a restrained structure, all reasonable notions of dimension (topological, Hausdorff, Minkowski, ...) coincide for unary closed definable sets (we also have partial results for non-unary sets)
Dans cet exposé, on présentera plusieurs notions fondamentales de la géométrie tropicale et on s'intéressera tout particulièrement aux groupes d'homologie dans le cadre tropical. Sous certaines conditions, une variété tropicale peut être approximée par une famille à un paramètre de variétés complexes, et des caractéristiques importantes des variétés de cette famille peuvent être exprimées en termes des groupes d'homologie tropicaux de la variété tropicale considérée (travail en commun avec L. Katzarkov, G. Mikhalkin et I. Zharkov).