Zilber conjectured that the complex exponential field (C
Tout groupe constructible est algébrique (Weil - Van den Dries - Hrushovski). Pillay en 1997, puis Kowalski et Pillay en 2001, ont montré que la composante connexe de tout groupe constructible dans un corps différentiellement clos ou dans un corps avec un automorphisme générique, se plonge (à noyau fini près dans le second cas) dans un groupe algébrique. Ces démonstrations consistent à obtenir une configuration de groupe dans le pur corps algébriquement clos à partir de celle dans le corps enrichi. Pour les groupes définissables dans les corps colorés, corps […]
Je parlerai d'une description des fibres de Milnor d'une fonction polynomiale réelle qui passe par l'étude d'un ensemble de séries de Puiseux. On calcule l'homologie semialgébrique de cet ensemble, que l'on compare avec les fibres de Milnor topologiques.Il s'agit d'un travail en commun avec Masahiro Shiota, de Nagoya.
La géométrie énumérative est la branche des mathématiques dont l'objectif est de répondre à des questions du type: Combien de droites passent par 2 points dans le plan (facile)? Combien de coniques passent par 5 points dans le plan (facile)? Combien de cubiques avec un point double passent par 8 points dans le plan (moins facile)?Si l'on compte les courbes définies sur le corps C, alors ce nombre de courbes ne dépend pas de la configuration de points choisie, tout comme le nombre de racines complexes d'un polynôme en une […]
Soit X une surface algébrique de type K3 munie d'une involution non-symplectique. Nous classifions les fibrations elliptiques sur X sous certaines hypothèses sur l'involution non-symplectique. L'idée sous-jacente est de transférer le problème a une surface plus simple du point de vue géométrique. L'exposé portera sur une collaboration en cours avec Alice Garbagnati (Milan).
Let L/K be a normal extension of number fields. The Hasse normprinciple is a local-global principle for norms. It is satisfied if anyelement x of K is a norm from L whenever it is a norm locally at everyplace. For any fixed abelian Galois group G, we investigate the densityof G-extensions violating the Hasse norm principle, when G-extensionsare counted in order of their discriminant. This is joint work with DanLoughran and Rachel Newton.
De façon empirique, nous parvenons à faire beaucoup de choses avec plus ou moins d’efficacité et de réussite. Quand il s’agit de faire un créneau, les conséquences peuvent parfois être risibles... Mais quand il s’agit de propulser une fusée ou de planifier des missions interplanétaires, il vaut mieux ne pas rater son coup.La théorie du contrôle est une branche des mathématiques qui permet de contrôler, d'optimiser et de guider des systèmes sur lesquels on a une action, comme par exemple une voiture, un robot, une navette spatiale, une réaction chimique, […]
Lorsque l’on compose deux polynômes d’une variable, le degré du polynôme obtenu est égal au produit des degrés des deux polynômes initiaux. Considérons maintenant un problème qui fait intervenir plusieurs variables. On se donne une transformation f de l’espace affine de dimension n dans lui même qui est définie par des formules polynomiales. Par compositions successives, nous obtenons une suite de transformations polynomiales : f, f^2=f circ f, f^3=f circ f circ f, …, f^k. Que dire du degré des formules qui définissent f^k lorsque k varie ? Nous verrons que derrière cette question simple se cachent des […]
Les versions locales en p des indices de Tits caractérisent les classes d'équivalences motiviques des groupes semisimples. L'objectif de cet exposé est de présenter deux travaux consécutifs à ce résultat. On proposera dans un premier temps la classification des algèbres à involution à équivalence motivique près (travail commun avec Anne Quéguiner et Maksim Zhykhovich). Par suite on abordera la détermination de l'ensemble des valeurs possibles de ces p-indices de Tits (travail en commun avec Skip Garibaldi). Cette étude exhaustive aboutit à un dictionnaire complet mêlant structures algébriques, invariants cohomologiques, algèbres […]
Let G be a split semisimple linear algebraic group over a field k, let Ebe a G-torsor over k. Let h be an algebraic oriented cohomology theory inthe sense of Levine-Morel (e.g.~Chow ring or an algebraic cobordism).Consider a twisted form E/B of the variety of Borel subgroups G/B.Following Brion's and Kostant-Kumar's results on equivariant cohomology offlag varieties we establish an equivalencebetween the h-motivic subcategory generated by E/B and the category ofprojective modules of certain Hecke-type algebra H which depends on theroot system of G, its isogeny class, on E, and […]