Designed and built with care, filled with creative elements

Top

Sur la théorie géométrique des anneaux

Salle U+V ENS DMA

Quite recently Eliyahu Rips and Arye Juhasz constructed an Engel but not locally nilpotent group, i.e. group which satisfies for some positive $n$ the identity $underbrace{,y,dots,y]dots]}_n=e$.This group has non-postitive curvature and big commutative parts, some parts have small cancellation and some commute. - This group looks in some sense like a ring, and group multiplication behaves sometimes like multiplication and sometimes like addition. The theory of canonic forms of this group is applicable for rings, in particulary in skew field construction. In different sense some semigroup constructions can be transformed […]

Le groupe des normes d’une extension finie de Q

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Soit K un sous-corps de C, que l'on suppose de dimension finie sur Q. La norme N(x) d'un élément de K est définie comme le déterminant de la multiplication par x dans le Q-espace vectoriel K. On s'intéresse dans cet exposé au sous-groupe N(K*) du groupe multiplicatif Q*. On expliquera comment dans certaines situations on peut détecter si un élément de Q* appartient à N(K*). On verra aussi que le quotient Q*/N(K*) est toujours infini, mais que la preuve de ce résultat nécessite des outils sophistiqués aussi bien de théorie […]

Intelligence artificielle et raisonnement inductif : de la théorie de l’information aux réseaux de neurones

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Les problèmes de raisonnement inductif ou d'extrapolation comme deviner la suite d'une série de nombres, ou plus généralement, comprendre la structure cachée dans des observations, sont fondamentaux si l'on veutun jour construire une intelligence artificielle. On a parfois l'impression que ces problèmes ne sont pas mathématiquement bien définis. Or il existe une théorie mathématique rigoureuse du raisonnement inductif et de l'extrapolation, basée sur la théorie de l'information. Cettethéorie est très élégante, mais difficile à appliquer.En pratique aujourd'hui, ce sont les réseaux de neurones qui donnent les meilleurs résultats sur toute une série de problèmes concrets d'induction et […]

Non-standard fewnomials

Salle W ENS

Call non-standard fewnomial (or sparse/lacunary polynomial) a non-standard polynomial whose number of non-zero terms is finite. The non-standard translation of a conjecture of Rényi and Erdöt

Profinite NIP groups

Salle W ENS

We consider profinite groups as 2-sorted first order structures, with a group sort, and a second sort which acts as an index set for a uniformly definable basis of neighbourhoods of the identity. It is shown that if the basis consists of all open subgroups, then the first order theory of such a structure is NIP (that is, does not have the independence property) precisely if the group has a normal subgroup of finite index which is a direct product of finitely many compact p-adic analytic groups, for distinct primes […]

Wave front sets of distributions in non-archimedean analysis

Salle W ENS

In 1969, Sato and Hörmander introduced the notion of wave front set of a distribution in the real context. This concept gives a better understanding of operations on distributions such as product or pullback and it plays an important role in the theory of partial differential equations. In 1981, Howe introduced a notion of wave front set for some Lie group representations and in 1985, Heifetz gave an analogous version in the p-adic context. In this talk, in the t-adic context in characteristic zero, using Cluckers-Loeser motivic integration we will […]

Irreducibility of Polynomials over Number Fields is Diophantine

ENS Salle W

We show that irreducibility of a polynomial in any number of variables over a number field is a diophantine condition, i.e. captured by an existential formula. This generalises a previous result by Colliot-Thélène and Van Geel that the set of non-nth-powers is diophantine for any n. Our method is heavily based on the Brauer group, originating from Poonen's use of quaternion algebras as a technical tool for first-order definitions in number fields.

The Lang-Vojta conjecture and smooth hypersurfaces over number fields.

ENS Salle W

Siegel proved the finiteness of the set of solutions to the unit equation in a number ring, i.e., for a number field K with ring of integers O, the equation x+y=1 has only finitely many solutions in O*. That is, reformulated in more algebro-geometric terms, the hyperbolic curve P^1-{0,1,infinite} has only finitely many 'integral points'. In 1983, Faltings proved the Mordell conjecture generalizing Siegel's theorem: a hyperbolic complex algebraic curve has only finitely many integral points. Inspired by Faltings's and Siegel's finiteness results, Lang and Vojta formulated a general finiteness […]

La composition de Gauss pour les points entiers primitifs de sphères, en suivant, partiellement, Gunawan.

ENS Salle W

Gauss a donné des formules pour le nombre de points entiers primitifs de la 2-sphère de rayon au carré égal à n. Ces formules sont en termes de nombres de classes d'anneaux quadratiques de discriminant étroitement liés à n. Cela mène à la question de savoir si ceci peut être expliqué par une action libre et transitive du groupe de Picard de cet anneau sur l'ensemble des tels points entiers primitifs à symétries globales SO_3(Z) près. Ceci est en effet le cas, et cette action peut être explicitée. L'outil utilisé […]

Sur le 17ème problème de Hilbert en petit degré.

ENS Salle W

Artin a résolu le 17ème problème de Hilbert en démontrant qu'un polynôme positif en n variables à coefficients réels est une somme de carrés de fractions rationnelles, et Pfister a montré que 2^n carrés suffisent. Dans cet exposé, on étudiera quand le théorème de Pfister peut être amélioré. On montrera qu'un polynôme réel positif de degré d en n variables est une somme de (2^n)-1 carrés si d<2n, et dans certains cas si d=2n.

Hasse principles over global function fields

ENS Salle W

I will explain some geometric ideas (mostly due to de Jong-Starr) one can use to study the Hasse principle for varieties defined over funvtion fields. I will illustrate these methods by giving a new proof of the classical result of Hasse -Minkowsky on quadrics.