Designed and built with care, filled with creative elements

Top

Irreducibility of Polynomials over Number Fields is Diophantine

ENS Salle W

We show that irreducibility of a polynomial in any number of variables over a number field is a diophantine condition, i.e. captured by an existential formula. This generalises a previous result by Colliot-Thélène and Van Geel that the set of non-nth-powers is diophantine for any n. Our method is heavily based on the Brauer group, originating from Poonen's use of quaternion algebras as a technical tool for first-order definitions in number fields.

The Lang-Vojta conjecture and smooth hypersurfaces over number fields.

ENS Salle W

Siegel proved the finiteness of the set of solutions to the unit equation in a number ring, i.e., for a number field K with ring of integers O, the equation x+y=1 has only finitely many solutions in O*. That is, reformulated in more algebro-geometric terms, the hyperbolic curve P^1-{0,1,infinite} has only finitely many 'integral points'. In 1983, Faltings proved the Mordell conjecture generalizing Siegel's theorem: a hyperbolic complex algebraic curve has only finitely many integral points. Inspired by Faltings's and Siegel's finiteness results, Lang and Vojta formulated a general finiteness […]

La composition de Gauss pour les points entiers primitifs de sphères, en suivant, partiellement, Gunawan.

ENS Salle W

Gauss a donné des formules pour le nombre de points entiers primitifs de la 2-sphère de rayon au carré égal à n. Ces formules sont en termes de nombres de classes d'anneaux quadratiques de discriminant étroitement liés à n. Cela mène à la question de savoir si ceci peut être expliqué par une action libre et transitive du groupe de Picard de cet anneau sur l'ensemble des tels points entiers primitifs à symétries globales SO_3(Z) près. Ceci est en effet le cas, et cette action peut être explicitée. L'outil utilisé […]

Sur le 17ème problème de Hilbert en petit degré.

ENS Salle W

Artin a résolu le 17ème problème de Hilbert en démontrant qu'un polynôme positif en n variables à coefficients réels est une somme de carrés de fractions rationnelles, et Pfister a montré que 2^n carrés suffisent. Dans cet exposé, on étudiera quand le théorème de Pfister peut être amélioré. On montrera qu'un polynôme réel positif de degré d en n variables est une somme de (2^n)-1 carrés si d<2n, et dans certains cas si d=2n.

Hasse principles over global function fields

ENS Salle W

I will explain some geometric ideas (mostly due to de Jong-Starr) one can use to study the Hasse principle for varieties defined over funvtion fields. I will illustrate these methods by giving a new proof of the classical result of Hasse -Minkowsky on quadrics.

Arithmetic purity

ENS Salle W

It is well-known that weak approximation is birational invariant between smooth varieties by the implicit function theorem. For strong approximation, such property is no longer true. However one can expect that strong approximation is invariant between smooth varieties up to a closed sub-variety of codimension at least 2. Indeed, this result is proved for affine spaces in a joint work with Yang Cao which is applied to show strong approximation for toric varieties. Such result is also proved by Dasheng Wei by using a different method. In this talk, I'll […]

Burnside groups and small cancellation theory

IHP (rue Pierre-et-Marie Curie) salle 01

The Novikov-Adian theorem states that a non-cyclic Burnside group B(m,n) of odd exponent n greater or equal 665 is infinite. Starting from the original approach, all known proofs of infiniteness of B(m,n) utilize the idea that the group can be described in terms of some iterated small cancellation condition. In the last decade, several explicit implementations of small cancellation conditions of this type were introduced which can be applied also in a more general setup to groups acting on hyperbolic metric spaces. I will give a brief overview of the […]

Strong hyperbolicity

Salle 001 IHP (rue Pierre-et-Marie Curie)

This talk is concerned with the space between CAT(-1) spaces and Gromov hyperbolic spaces. Part of the motivation comes from the analytic theory of hyperbolic groups, and one of the main goals is that of getting hyperbolic groups to act geometrically on hyperbolic spaces with additional CAT(-1) features. Based on joint work with Jan Spakula.

Cohomology jump loci

ENS Salle W Escalier B 4è étage Toits du DMA

Firstly, we propose and illustrate a refinement of Deligne?RTMs principle: every infinitesimal deformation problem over a field of characteristic zero with cohomology constraints is governed by a differential graded Lie algebra together with a module. Secondly, we review recent results about the global structure of cohomology jump loci of rank one local systems. Finally, we address future directions for other types of jump loci. All this is joint work with Botong Wang.

Maths pour tous

ENS salle IFRAF aile Rataud 4è étage

La trichotomie et les idéaux virtuels

Sophie Germain salle 1016

La théorie ACFA des corps aux différences existentiellement clos est supersimple. La trichotomie (de Zilber) est la propriété suivante des types minimaux : la prégéométrie donnée par acl sur l'ensemble des réalisations du type, est ou bien triviale (acl(A)=igcup_{a in A} acl(a))