Designed and built with care, filled with creative elements

Top

Le théorème du stabilisateur de E. Hrushovski (version de S. Montenegro, A. Onshuus et P. Simon)

Sophie Germain salle 1016

Dans son article Stable group theory and approximatesubgroups (2011), Hrushovski montre (et utilise de manière essentielle)un résultat, auquel on se réfère depuis comme le théorème dustabilisateur, qui permet sous certaines hypothèse locales(mais sansstabilité ni simplicité) de construire des groupes (stabilisateurs d'untype, dans un certain sens) infiniment définissables.Tout récemment, dans un travail sur les Groups with f-generics in NTP_2and PRC fields, Montenegro, Onshuus et Simon en démontrent uneversion un petit peu différente, avec des hypothèses un peu plus fortes,mais une preuve plus simple. C'est cette version dont je me propose devous […]

Comportement en grand temps des solutions d’équations de type Fisher-KPP

ENS en salle W

Dans un article célèbre de 1937, Kolmogorov, Petrovskii et Piskunov démontrent, pour une équation de réaction-diffusion apparemment très simple, introduite par Fisher comme un modèle de dynamique des populations, la convergence de la solution issue de la fonction de Heaviside vers une solution d'onde progressive. Cette convergence a lieu dans un repère suivant celui de l'onde, modulo unecorrection sous-linéaire en temps. Ils ne précisent pas si ce shift tend vers une constante ou si un comportement moins trivial a lieu. Les équations similaires à celles étudiées par Kolmogorov, Petrovskii et […]

Transition vitreuse et couches limites

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Nous présenterons les fluides vitreux mous et quelques caractéristiques comme transition vitreuse et vieillissement. Nous expliquerons comment ces phénomènes peuvent être apparentés a des couches limites mathématiques spatiales ou temporelles sur un modèle proposé en physique.

Maximalité des sous-groupes hyperspéciaux (sans utiliser Bruhat-Tits).

ENS Salle W

Soient K un corps p-adique et G un groupe réductif sur son anneau des entiers A. Il découle des travaux de Bruhat-Tits que le sous-groupe compact G(A) de G(K) est maximal - ces sous-groupes sont dits hyperspéciaux. J'expliquerai une preuve de ce résultat où les arguments combinatoires de Bruhat-Tits sont remplacés par des considérations géométriques sur la variété des sous-groupes de Borel de G.

Groupe de Picard des formes du groupe additif et de la droite affine.

ENS Salle W

Au vu des progrès récents sur la structure des groupes algébriques linéaires sur un corps quelconque, il semble possible d'étudier leur groupe de Picard si le groupe de Picard des groupes algébriques unipotents (lisses, connexes) est assez bien connu. Un groupe unipotent (lisse, connexe) est extension itérée de formes du groupe additif. L'étude du groupe de Picard des formes du groupe additif est donc le premier pas vers l'étude du groupe de Picard des groupes algébriques linéaires sur un corps quelconque. Je vais présenter une borne explicite sur la torsion […]

Groupes valués construits sur (Z, +) avec une chaîne finie

Batiment Sophie Germain Salle 116

A longueur de chaîne finie fixée N+2, nous axiomatisons la théorie commune à tous les groupes valués (Z, +, v, I), c'est-à-dire la théorie commune à toutes les structures obtenues en munissant le groupe additif de Z de prédicats pour N sous-groupes non nuls formant une chaîne strictement décroissante. Nous présentons un langage dans lequel tout modèle de cette théorie a l'élimination des quantificateurs. Ces deux résultats découlent d'un même lemme que l'on démontre en se ramenant à une paire de groupes (c'est-à-dire à une chaîne de valuation de longueur […]

Chemins auto-évitants sur le réseau en nid d’abeille

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

 Dans cet exposé, nous partirons à la découverte d'un modèle classique de physique statistique décrivant le comportement de polymères dans un solvant. Nous parlerons en particulier des liens profonds que ces modèles entretiennent avec la physique théorique et les autres branches des mathématiques.

Introduction au calcul paracontrollé et application au modèle parabolique d’Anderson

Jussieu - salle 15-25 502 (salle inhabituelle !)

Résumé : Le calcul paracontrollé est une théorie très récente, développée par Gubinelli-Imkeller-Perkowski pour l'étude d'EDP singulières / stochastiques. Cette approche, parallèle à celle de Hairer ('structures de régularité') est basée sur une décomposition à l'aide de paraproduits afin d'isoler exactement les termes singuliers. Dans une première partie, je présenterai tout d'abord les bases / prérequis sur les paraproduits et leur continuités dans les espaces de Hölder. Ceci nous permettra de comprendre la problèmatique et les difficultés apparaissant dans l'equation prototype: modèle parabolique d'Anderson (PAM) en dimension 2. Nous verrons […]

Comment l’ordre émerge du désordre : des nuages de points browniens à la gravitation de Newton

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

L’observation à un instant T du mouvement brownien d’un nuage de points indistinguables dont on connaît la position initiale conduit naturellement au problème de transport optimal de Monge, comme on le comprend dorénavant bien à la suite d’un article de Schrödinger datant des années 30. En poussant un peu plus loin l’analyse, à l’aide du principe de grandes déviations et de techniques de calcul des variations, on arrive à un système dynamique de particules liée au groupe symétrique, dont on peut ensuite dériver par analyse asymptotique le modèle de gravitation […]