Les méthodes entropiques, d'inégalités fonctionnelles (de Sobolev, Sobolev logarithimiques) et de transport optimal sont adaptées à l'étude d'équations de dérive-dffusion, de type Fokker-Planck : elles permettent en particulier d'en mieux saisir la dynamique, notamment en temps petit et grand. On en présentera les résultats classiques, dûs notamment à D. Bakry, Y. Brenier, M. Emery, M. Ledoux, F. Otto, et des apports récents, obtenus avec I. Gentil et A. Guillin.
14.00-14.45 Marc Bourdon (Lille) : Espaces hyperboliques, dimension conforme et cohomologie $ell _p$15.00-15.45 Masato Mimura (EPFL Lausanne) : Superintrinsic synthesis in fixed point properties15.45-16.15 pause café16.15-17.00 Mikael De La Salle (ENS Lyon) : Zuk's criterion for actions on Banach spaces
Pour décrire le comportement d'un fluide visqueux incompressible transportant des particules solides,il est nécessaire d'avoir recours à différentes approches selon la concentration de la phase solide.Dans un cadre suffisamment dilué, mais où le nombre des particules est trop élevé pour qu'une descriptionindividuelle soit pertinente, une de ces approches consiste à coupler une équation de type Stokes ou Navier-Stokes pourle fluide avec une équation de Vlasov pour la phase solide. Une question est alors de calculer les termes de couplageà ajouter entre ces deux équations de façon à prendre en compte […]
This is a Joint work with Xuan Vu, Nadège Thirion-Moreau and Sylvain Maire (LSIS, Toulon). We address the problem of third order nonnegative tensor factorization with penalization. More precisely, the Canonical Polyadic Decomposition (CPD) is considered. It constitutes a compact and informative model consisting of decomposing a tensor into a minimal sum of rank-one terms. This multi-linear decomposition has been widely studied in the litterature. Coupled with 3D fluorescence spectroscopy analysis, it has found numerous interesting applications in chemistry, chemometrics, data analysis for the environment, monitoring and so on. The […]
Le problème de reconstruire un volume 3D à partir de coupes 2D est fréquent dans de nombreuses applications en imagerie médicale ou en infographie. La principale difficulté est d'incorporer les contraintes car, en fonction du contexte, on peut parfois vouloir imposer des contraintes strictes, et d'autres fois conserver une certaine liberté en cas de données bruitées ou imprécises. Je présenterai des résultats récents que nous avons obtenus pour ce problème avec Elie Bretin et François Dayrens. Notre approche repose sur un modèle variationnel utilisant un terme de régularisation géométrique (tel […]
Consider a set of convex figures in R^2. It can be proven that one of these figures can be moved out of the set by translation without disturbing the others. Therefore, any set of planar figures can be disassembled by moving all figures one by one. However, attempts to generalize it to R^3 have been unsuccessful and finely quite unexpectedly interlocking structures of convex bodies were found. These structures can be used in engineering. In a small grain there is no room for cracks, and crack propagation should be arrested […]
Let k be a field and let P be a lattice polygon, i.e. the convex hull in R^2 of finitely many non-collinear points of Z^2. Let C/k be the algebraic curve defined by a sufficiently generic Laurent polynomial that is supported on P. A result due to Khovanskii states that the geometric genus of C equals the number of Z^2-valued points that are contained in the interior of P. In this talk we will give an overview of various other curve invariants that can be told by looking at the […]
I will discuss joint work with Martin Bridson and Martin Liebeck which addresses the question: for which collections of finite simple groups does there exist an algorithm that determines the images of an arbitrary finitely presented group that lie in the collection? We prove both positive and negative results. For a collection of finite simple groups that contains infinitely many alternating groups, or contains classical groups of unbounded dimensions, we prove that there is no such algorithm. On the other hand, for a collection of simple groups of fixed Lie […]
P-minimality is a concept that was developed by Haskell and Macpherson as a p-adic equivalent for o-minimality. For o-minimality, the cell decomposition theorem is probably one of the most powerful tools, so it is quite a natural question to ask for a p-adic equivalent of this.In this talk I would like to give an overview of the development of cell decomposition in the p-adic context, with an emphasis on how questions regarding the existence of definable skolem functions have complicated things. The idea of p-adic cell decomposition was first developed […]
Les problèmes de raisonnement inductif ou d'extrapolation comme 'deviner la suite d'une série de nombres', ou plus généralement, 'comprendre la structure cachée dans des observations', sont fondamentaux si l'on veut un jour construire une intelligence artificielle. On a parfois l'impression que ces problèmes ne sont pas mathématiquement bien définis. Or il existe une théorie mathématique rigoureuse du raisonnement inductif et de l'extrapolation, basée sur la théorie de l'information. Cette théorie est très élégante, mais difficile à appliquer. En pratique aujourd'hui, ce sont les réseaux de neurones qui donnent les meilleurs […]