Tame geometry and diophantine approximation
ZoomTame geometry is the study of structures where the definable sets admit finite complexity. Around 15 years ago Pila and Wilkie discovered a deep connection between tame geometry and diophantine approximation, in the form of asymptotic estimates on the number of rational points in a tame set (as a function of height). This later led to deep applications in diophantine geometry, functional transcendence and Hodge theory.I will describe some conjectures and a long-term project around a more effective form of tame geometry, suited for improving the quality of the diophantine […]