On the classification of quadratic forms over an integral domain of a global function field.
ENS Salle WLet C be a smooth projective curve defined over the finite field F_q (q is odd) and let K=F_q(C) be its function field. Any (non-empty) finite set S of closed points of C gives rise to an integral domain O_S := F_q in K. We show that given an O_S-regular quadratic space (V,q) of rank n ?oo 3, the set of genera in the proper classification of quadratic O_S-spaces isomorphic to (V,q) in the flat or étale topology, is in 1:1 correspondence with 2.Br(O_S), thus there are 2|S|-1 genera. Furthermore, […]