The J-invariant of a linear algebraic group measures the subring of rational cycles on the variety of its Borel subgroups. In the talk I'm going to introduce this invariant and discuss its possible values. The restrictions come from Steenrod operations and from indices of Tits algebras. If time permits, I will discuss applications of the J-invariant to cohomological invariants of algebraic groups.
Cet exposé est basé sur un travail commun avec K. Zainoulline et N. Semenov. Dans un premier temps, nous expliquerons comment définir le J-invariant d'une algèbre à involution à partir de son groupe d'automorphisme, en particulier dans le cas trialitaire. En utilisant le lien avec les indices des algèbres de Tits présenté par N. Semenov dans son exposé, nous montrerons comment calculer le J-invariant en petit degré. Enfin, nous obtiendrons des restrictions supplémentaires sur les valeurs possibles, qui ne semblent pas pouvoir être détectées à l'aide des opérations de Steenrod.
Les multiplicateurs des similitudes d'une forme quadratique de dimension 12 dont le discriminant et l'invariant de Witt-Clifford sont triviaux sont dans le groupe engendré par les normes des extensions quadratiques qui la déploient. Il en résulte que le groupe orthogonal de type adjoint de cette forme est R-trivial, et que la conjecture de Kneser-Tits vaut pour les groupes d'indice de Tits E_{8,2}^{66} sur un corps arbitraire. (Travail en collaboration avec Skip Garibaldi, Parimala et Richard Weiss.)
Matrices à signes alternants
J'expliquerai comment on peut aborder les résultats récents de E. Hrushovski et F. Loeser sur la topologie des variétés algébriques sur un corps non archimédien en reprenant le point de vue de Berkovich, fondé sur des théorèmes de désingularisation.
Je commencerai par présenter les résultats basiques de la théorie des modèles des corps ?Roedifférentiellement clos?Roe au sens des dérivations de Hasse en toute caractéristique.Ensuite j'introduirai les notions de D-prolongations et de D-structures sur une variété, pour D une dérivation de Hasse, et expliquerai les liens avec des théorèmes de descente sur le corps des constantes. Ce contexte nous permettra de ?Roerevisiter?R avec un point de vue différent certaines des notions que j'avais introduites lors de mon exposé du 19 novembre à ce même séminaire ou qui avaient été évoquées […]
Let K be a discretely valued field with perfect residue field k. Let G be a semi-abelian variety over K, i.e., an extension of an abelian K-variety A by a K-torus T. The Néron lft-model of G is the minimal extension of G to a smooth group scheme over the value ring of K. We say that G has semi-abelian reduction if the identity component of the special fiber of the Néron lft-model of G is a semi-abelian k-variety. By Grothendieck's Semi-Stable Reduction Theorem, G acquires semi-abelian reduction over some […]
Titre à préciser
Hilbert's fifth problem asks whether every locally euclidean group G can be equipped with a real analytic structure (compatible with the topology) so that the group operations become real analytic
I will survey some results on definable groups in o-minimal structures, some old, some new, emphasizing the interplay between algebra, logic, and topology. In particular I will show how a combination of techniques from model theory and algebraic topology lead to the determination of the definable homeomorphism type of definable abelian groups in dimension not equal to 4 (joint work with E. Baro). If time permits, I will consider the problem of finding a tame definable context, larger than o-minimality, which is suitable for the study of universal covers (work […]
Le groupe de Cremona Crn(C) est le groupe des transformations birationnelles de Cn. Au contraire des groupes de matrices, on ne sait pas, si n?oo2, s'il possède des sous-groupes de type fini non résiduellement finis. Je montrerai une version faible dans cette direction: il est sofique, c'est-à-dire approximable, en un sens convenable, par des groupes finis (notion introduite par M. Gromov et B. Weiss). J'introduirai en détail toutes les notions utilisées.