Hélicité des champs de vecteurs et enlacement asymptotique
ENS (amphithéâtre Galois sous la bibliothèque de mathématique)Hélicité des champs de vecteurs et enlacement asymptotique
Hélicité des champs de vecteurs et enlacement asymptotique
Déformations de structures
Théorie du contrôle optimal et applications en aéronautique
Algèbre extérieure, algèbre symétrique et théorème de l'indice.
The P vs NP problem : Internet security, efficient computations and the limit of human knowledge
Matrices à signes alternants
Titre à préciser
Titre à préciser
On se donne un jeu de 52 cartes. Chacun sait que si on mélange ce paquet suffisamment de fois, l’ordre des cartes finira par être aléatoire (uniforme). Mais combien de fois faut-il vraiment mélanger le paquet ?Cette question simple nous mènera vers une théorie mathématique très riche, qui mêle tout a la fois des probabilités, de la théorie de la représentation, ainsi que de l’analyse et de la géométrie. En particulier nous introduirons le phénomène de cutoff, découvert par Aldous et Diaconis dans les années 80, qui décrit une transition […]
Supposons que deux routes mènent d’une même ville à une autre, que l’une soit une autoroute toute droite, et l’autre un chemin campagnard plus long ; si tout le monde choisit la première, elle sera bientôt congestionnée et donc moins efficace que l’autre ; au lendemain, tout le monde changera d’avis et empruntera l’autre... et ça sera encore pire ! Y a-t-il un équilibre ? Est-ce que l’équilibre garantit le moindre temps de parcours pour tout le monde ?Je présenterai les ingrédients pour formaliser ce problème sur un réseau fini […]
Un réseau euclidien est la donnée d’un espace vectoriel euclidien de dimension finie V et d’un sous-groupe Gamma de V, constitué des points de V dont les coordonnées, dans une certaine base de V, sont des nombres entiers. Les réseaux euclidiens interviennent dans de nombreux domaines des mathématiques, allant de la théorie des nombres à la géométrie riemannienne, ainsi qu’en physique du solide, en cryptographie, etc... En dépit de la simplicité de leur définition et de leur ubiquité, ces objets restent aujourd’hui bien mystérieux. Dans cet exposé, on évoquera plusieurs […]
Le célèbre théorème de Perron-Frobenius vient de fêter ses 100 ans. Des démonstrations (parfois simples) et des généralisations voient le jour régulièrement. Je vais sélectionner quelques éléments importants dans l’histoire de cette évolution, à travers des exemples en mécaniques statistiques, systèmes dynamiques et probabilités. Une des plus grandes contributions vient de G. Birkhoff qui introduisit en 1957 un principe de contraction uniforme pour des cônes (réels). Ceci a été ma source d’inspiration pour développer un principe de contraction uniforme pour des `cônes complexes’ et ainsi obtenir des théorèmes de type […]