Actions localement quadratiques de groupes de Chevalley, et représentations minuscules
Sophie Germain salle 1016Un très beau théorème de Timmesfeld caractérise, sans hypothèse sur K, la représentation naturelle de G = SL(2,K) parmi les Z-modules : c'est le seul Z-module irréductible V où les sous-groupes unipotents de G agissent `quadratiquement', i.e. = 0 (en itérant les commutateurs).Montrer ce théorème, c'est essentiellement savoir reconstruire sur un Z-module quadratique une structure de K-espace vectoriel compatible avec l'action de G.L'exposé présentera une généralisation de ce théorème aux autres groupes de Chevalley simples : si G est un tel groupe, et V un Z-module sur lequel chaque sous-groupe […]