Géométrie et transcendance
ENS (amphithéâtre Galois sous la bibliothèque de mathématique)Au delà de la preuve par Hermite et Lindemann de la transcendance des constantes e et $pi$,Les nombres algébriques sont ceux qui sont solution d'une équation polynomiale (non triviale) à coefficients rationnels ;les autres sont appelés transcendants, parmi lesquels $e$ (Hermite) et $pi$ (Lindemann). De même, les fonctions algébriques (d'une variable $z$) sont celles qui sont solutiond'une équation polynomiale (non triviale) à coefficients polynomiaux ; les autres sont qualifiées de transcendantes,par exemple la fonction exponentielle.La théorie des nombres transcendants s'attache à établir la transcendance de valeurs de fonctions méromorphes transcendantes,ou, […]