Designed and built with care, filled with creative elements

Top

Autour d’une conjecture de Kato et Kuzumaki

ENS Salle W

En 1986, Kato et Kuzumaki ont émis des conjectures concernant les liensentre la dimension cohomologique des corps, la K-théorie de Milnor etles hypersurfaces projectives de petit degré. Ces conjectures sontfausses en toute généralité, mais elles restent ouvertes pour les corpsqui apparaissent usuellement en arithmétique et en géométrie algébrique.Dans cet exposé, je présenterai plusieurs résultats en lien avec lesconjectures de Kato et Kuzumaki pour les corps globaux et pour certainscorps de fonctions.

Au sujet d’une conjecture de Voskresenskii

ENS Salle W

Dans cette collaboration avec M. Florence, nous nous intéressons à la question de savoir quand les notions de rationalité et rationalité stable sont équivalentes. Nous traitons cette question dans le cas des tores, où une réponse positive est conjecturée par Voskresenskii. Pour une certaine classe de tores, cette conjecture est prouvée par Klyachko à l'aide de principes généraux. Nous donnons une nouvelle preuve explicite, en passant par des morphismes simples, menant à une application en cryptographie.

Un après-midi de marches aléatoires sur les groupes

Toits du DMA salle W

14.00-14.45 François Ledrappier (Paris VI), Differentiability of the linear drift in negative curvature15.00-15.45 Johannes Cuno (ENS), Random walks on Baumslag-Solitar groups15.45-16.15 pause café16.15-17.00 Ariel Yadin (Ben Gurion University), Intersectional IRS and Furstenberg entropy realization

Oumuamua, the Gömböc and the Pebbles of Mars

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

In this talk I will concentrate on two examples from planetary science which made the headlines in recent years to highlight the power and significance of nonlinear geometric partial differential equations (PDEs) explaining puzzles presented by Nature. One key link between PDE theory of shape evolution and natural phenomena is the Gömböc, the first mono-monostatic object whose existence was first conjectured by V.I. Arnold in 1995. I will explain the connection and illustrate the process how mathematical models of Nature may be identified.

Une introduction au chaos quantique.

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Il y a cent ans, pendant la préhistoire de la mécanique quantique, se posait la question de trouver des conditions de quantification pour décrire le spectre des atomes. Einstein en particulier s'est interrogé sur la quantification des systèmes qui ont la propriété d'ergodicité en mécanique classique. Nous ferons le point sur les principales conjectures liées à cette question, et décrirons quelques résultats récents, en insistant plus particulièrement sur la propriété appelée ergodicité quantique.

Recollement sur les courbes de Berkovich et principe local-global

ENS Salle W

Le recollement a été introduit dans un cadre géométrique pour traiter le problème inverse de Galois. Par la suite, la technique a été adaptée à un contexte plus algébrique par Harbater et Hartmann, puis développée par Harbater, Hartmann et Krashen. Nous commencerons par présenter une version de cette méthode sur les courbes de Berkovich. Ensuite, nous l'utiliserons pour démontrer un résultat local-global sur les corps de fonctions de courbes de Berkovich et finirons en expliquant l'application aux formes quadratiques. Nos résultats généralisent ceux de Harbater, Hartmann et Krashen.

3 exposés de dynamique et théorie des groupes

Salle W toits du DMA

14.00-14.45 Julien Cassaigne (IML, Marseille): A family of infinite words with complexity 2n+1 associated with a bidimensional continued fraction algorithm15.00-15.45 Milton Minervino (LaBRI, Bordeaux): Fractals de Rauzy et substitutions d'arbre15.45-16.15 coffee break16.45-17.00 Nathalie Aubrun (ENS, Lyon): Tilings problems on substitution orbits

A préciser

Univ. Pierre et Marie Curie salle du séminaire LJLL

A venir

On a conjecture of Colliot-Thélène

IHP amphitheatre Darboux

Let f be a morphism of projective smooth varieties X, Y defined over the rationals. The conjecture by Colliot-Thélène under discussion gives (conjectural) sufficient conditions which imply that for almost all rational prime numbers p, the map f maps the p-adic points X(Q_p) surjectively onto Y(Q_p). The aim of the talk is to present some recent results by Denef, Skorobogatov et al

The dynamical Mordell-Lang problem in positive characteristic

IHP amphitheatre Darboux

The dynamical Mordell-Lang conjecture in characteristic zero predicts that if f : X --> X is a map of algebraic varieties over a field K of characteristic zero, Y subset X is a closed subvariety and a in X(K) is a K-rational point on X, then the return set { n in N : f^n(a) in Y(K) } is a finite union of points and arithmetic progressions. For K a field of characteristic p > 0, it is necessary to allow for finite unions with sets of the form { […]