Strongly NIP almost real closed fields
Sophie Germain salle 1016The following conjecture is due to Shelah--Hasson: Any infinite strongly NIP field is either real closed, algebraically closed, or admits a non-trivial definable henselian valuation, in the language of rings. We specialise this conjecture to ordered fields in the language of ordered rings, which leads towards a systematic study of the class of strongly NIP almost real closed fields. As a result, we obtain a complete characterisation of this class.