Designed and built with care, filled with creative elements

Top

The word and conjugacy problems in finitely generated groups

Sophie Germain salle 2015

The word and conjugacy problems are central decision problems associated with finitely generated groups. In particular, there are deep results which bridge some of the main concepts of the theories of computability and computational complexity with group theoretical invariants through the word problem in groups. In this talk I will recall some of the well-known facts about the word and conjugacy problems in groups as well as discuss new results concerning the relationship between them.

Independence of CM points in elliptic curves

ENS Salle W

I will speak about joint work with Jacob Tsimerman. Let E be an elliptic curve parameterized by a modular (or Shimura) curve. There are a number of results (..., Buium-Poonen, Kuhne) to the effect that the images of CM points are (under suitable hypotheses) linearly independent in E. We consider this issue in the setting of the Zilber-Pink conjecture and prove a result which improves previous results in some aspects

Counting rational points with the determinant method

ENS Salle W

The determinant method gives upper bounds for the number of rational points of bounded height on or near algebraic varieties defined over global fields. There is a real-analytic version of the method due to Bombieri and Pila and a p-adic version due to Heath-Brown. The aim of our talk is to describe a global refinement of the p-adic method and some applications like a uniform bound for non-singular cubic curves which improves upon earlier bounds of Ellenberg-Venkatesh and Heath-Brown.

Patching over Berkovich Curves

ENS Salle W

Patching was first introduced as an approach to the Inverse Galois Problem. The technique was then extended to a more algebraic setting and used to prove a local-global principle by D. Harbater, J. Hartmann and D. Krashen. I will present an adaptation of the method of patching to the setting of Berkovich analytic curves. This will then be used to prove a local-global principle for function fields of curves that generalizes that of the above mentioned authors.

Nombres p-adiques et espaces de Berkovich

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Étant donné un nombre premier p, nous expliquerons tout d’abord comment construire une valeur absolue sur Q, dite p-adique, puis un complété, de la même façon que l’on construit R à partir de Q. Ce complété, le corps des nombres p-adiques, possède des propriétés arithmétiques intéressantes, mais présente de nombreuses pathologies topologiques. Nous expliquerons comment y remédier en le plongeant dans un espace plus grand, un espace de Berkovich, et exposerons quelques applications.

Computability, orders, and groups

Sophie Germain, salle 2015

Orderable groups are extensively studied by logicians and group theorists. In my talk I will address aspects of left- or bi-orderable groups that are connected with computability theory. In particular, I will talk about constructions of bi-orderable computable groups that cannot be embedded into groups with computable bi-order. I will also discuss our recent work in progress with M. Steenbock about simplicity and computably left-orderability.

Après-midi de théorie des groupes

Salle W (Toits du DMA)

14.00 -14.45 Cornelia Drutu (Oxford), Fixed point properties and conformal dimension of the boundary for hyperbolic groups 15.00- 15-45 Mathieu Dussaule (Nantes), The Guivarch inequality in relatively hyperbolic groups 15.45-16.15 coffee break, 16.15-17.00 Anthony Genevois (Orsay), Cubical geometry of braided Thompson's group

Inégalités fonctionnelles et problème de comportement en temps grand

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Dans cet exposé, nous verrons que certaines inégalités fonctionnelles jouent un rôle crucial dans l'étude du comportement en temps grand de solutions de certaines EDP. Plus précisément, nous utiliserons des méthodes dites de dissipation d'entropie (dont le but est t'établir des versions quantitatives du mécanisme de décroissance de l'entropie) dans le cas de l'équation de Fokker-Planck. Nous étudierons ensuite le cas plus complexe de l'équation de Boltzmann (homogène en espace) et verrons que ces méthodes fournissent également des résultats sur le comportement en temps grand des solutions de l'équation. Néanmoins, […]

Groups definable in Presburger arithmetic

Sophie Germain salle 2015

I will give a complete description of all groups definable in Presburger arithmetic, up to finite index subgroups. This builds on previous work on bounded groups in Presburger arithmetic by Mariana Vicaria and Alf Onshuus.

Almost strongly minimal ample geometries

The notion of ampleness captures essential properties of projective spaces over fields. It is natural to ask whether any sufficiently ample strongly minimal set arises from an algebraically closed field. In this talk I will explain the question and present recent results on ample strongly minimal structures.

Point-wise surjective presentations of stacks, or why I am not afraid of (infinity) stacks anymore

ENS Salle W

Any algebraic stack X can be represented by a groupoid object in the category of schemes: that is, a pair of schemes Ob, Mor and morphisms source, target: Mor → Ob, inversion: Mor → Mor, composition: Mor ×_{Ob} Mor → Mor and identity: Ob → Mor that satisfy certain axioms. Yet this description of the stack X might be misleading. Namely, given a field F which is not algebraically closed, we have a natural functor between the groupoid (Ob(F),Mor(F)) and the groupoid X(F). While this functor is fully faithful, it […]

Non-archimedean and motivic integrals on the Hitchin fibration

ENS Salle W

Based on mirror symmetry considerations, Hausel and Thaddeus conjectured an equality between `stringy' Hodge numbers for moduli spaces of SL_n/PGL_n Higgs bundles. With Michael Groechenig and Paul Ziegler we prove this conjecture using non-archimedean integrals on these moduli spaces, building on work of Denef-Loeser and Batyrev. Similar ideas also lead to a new proof of the geometric stabilization theorem for anisotropic Hitchin fibers, a key ingredient in the proof of the fundamental lemma by Ngô.In my talk I will outline the main arguments of the proofs and discuss the adjustments […]