Solving equations in finite groups and complete amalgamation
ZoomRoth's theorem on arithmetic progression states that a subset A of the natural numbers of positive upper density contains an arithmetic progression of length 3, that is, the equation x+z=2y has a solution in A.Finitary versions of Roth's theorem study subsets A of {0, ... , N}, and ask whether the same holds for sufficiently large N, for a fixed lower bound on the density. In a similar way, concerning finite groups, one may study whether or not sufficiently large sets of a finite group contain solutions of an equation, […]