Divisibilité du groupe de Chow des 0-cycles sur un corps local à corps résiduel algébriquement clos
Salle WIl s'agit d'un travail en commun avec Olivier Wittenberg.
Il s'agit d'un travail en commun avec Olivier Wittenberg.
In this talk I will report on progress on the following two questions, the first posed by Cassels in 1961 and the second considered by Bashmakov in 1974. The first question is whether the elements of the Tate-Shafarevich group are infinitely divisible when considered as elements of the Weil-Châtelet group. The second question concerns the intersection of the Tate-Shafarevich group with the maximal divisible subgroup of the Weil-Chatelet group. This is joint work with Mirela Ciperiani.
La conjecture de torsion prédit que si k est un corps de nombre etA une variété abélienne sur k alors l'ordre du sous-groupe de torsion deA(k) est borné par une constante ne dépendant que du degré de k sur Q etde la dimension de A.Cette conjecture n'est connue que pour les courbes elliptiques: Manin l'amontré en 69 pour les l-Sylow de la torsion (l:premier) puis Mazur (77),Kamienny (92), Merel (96) ont réussi a compléter la preuve en analysant lastructure des courbes modulaires X_{0}(l) (l:premier).Que les courbes elliptiques soient (essentiellement) classifiées […]
La topologie quantique est une branche de la topologie en petite dimension née il y a 30 ans environs avec la découverte du polynôme de Jones, probablement l’invariant de noeuds dans l’espace le plus fameux aujourd’hui. Les techniques et les idées qui sont à la base de cette théorie se situent au milieu de plusieurs sujet : la physique (par la théorie des champs), l’algèbre (par la théorie des représentations des groupes quantiques), la géométrie (par l’étude des espaces des représentations des groupes de surfaces) et bien évidemment la topologie. […]
Dans cet exposé, on montrera comment des considérations deprobabilités et d'algèbre se confrontent dans l'étude des matricesaléatoires. On commencera par expliquer comment on détermine la loides valeurs propres et vecteurs propres d'une matrice dont descoefficients sont des variables aléatoires gaussiennes indépendantes.On verra alors que les valeurs propres d'une telle matrice peuventêtre comprises comme des particules soumises à deux forcesantinomiques : un potentiel qui les confine au voisinage de l'origineet des interactions répulsives qui les poussent à s'écarter les unesdes autres. On fera alors tendre la dimension des matrices versl'infini et […]
Le sujet de cet exposé est la dynamique qualitative générique d'équations paraboliques scalaires du type $u_t=Delta u+f(x,u,abla u)$ sur un domaine $Omega$ borné. Les équilibres de ces équations sont-ils hyperboliques ? Peut-il y avoir des orbites périodiques et si oui, sont-elles isolées ? La dynamique engendrée par les EDP paraboliquesest-elle simple ou peut-elle exhiber du chaos ? Reste-t-elle qualitativement la même quand on change un peu les paramètres de l'équation ? On verra que la réponse à ces questions nécessite des théorèmes de type prolongement unique sur l'EDP et une […]
In this talk we consider the problem of counting the number of rational points of bounded height on certain intersections of two quadrics in five variables.These are del Pezzo surfaces of degree four, and we focus on the case where the surface has a conic bundle structure.