Généricité différentielle des fonctions spéciales et théories de Galois à paramètres
ENS Salle WEn théorie de la transcendance, on cherche à cerner les relations algébriques entre des nombres. Un problème plus simple consiste à se poser la même question sur les fonctions qui s'évaluent en ces nombres en espérant des théorèmes de transfert. D'après des résultats de Nishioka et Philippon, c'est le cas des fonctions de Mahler, qui satisfont des équations fonctionnelles discrètes en un opérateur de type Frobenius. En effet, les relations algébriques entre les valeurs de ces fonctions en des points algébriques se relèvent en des relations entre les fonctions elles-mêmes. […]