I’ll talk about relations between products of Dehn twists along simple closed curves on an oriented surface F. We view these products as elements of the boundary-relative mapping class group of F. A famous example is the `lantern relation’, discovered by D. Johnson in the 70s by drawing pictures. I’ll describe how many such relations, such as the lantern, can be discovered by viewing F as a complex 1-manifold sitting inside of a complex 2-manifold as part of a `Lefschetz fibration’. Time permitting, I’ll mention higher-dimensional generalizations and open problems.
Dans cet exposé, j'introduirai une EDP bien connue, l'équation de Schrödinger en présence d'un potentiel $$i \partial_t u = -\Delta u +V(t) u$$ où $\Delta$ est le laplacien usuel, $V(t)$ est un potentiel réel lisse en temps et en espace et le domaine est le tore 2D. J'expliquerai ensuite comment cette équation permet d'exhiber un exemple élémentaire du phénomène de \textit{turbulence faible}, à savoir l'existence de solutions lisses dont les normes $H^s,\ s>0$ explosent à l'infini, bien que toutes les solutions soient globales et voient leur norme $L^2$ conservée. J'en […]
Les tresses sont des objets que l’on rencontre dans la vie quotidienne : des entrelacements formés de plusieurs fils, brins, cheveux… Dans cet exposé, nous aborderons la théorie des groupes de tresses, qui sont fondamentaux en topologie de basse dimension. Après une introduction à leur définition et à leurs propriétés de base, nous explorerons un résultat clé : le théorème de Dehornoy, qui établit que les groupes de tresses sont ordonnables à gauche. Nous verrons pourquoi cette propriété est importante, notamment en lien avec les anneaux de groupes. Pour conclure, […]
Jean-Rémi King (CNRS, ENS & Meta AI) Title:AI and Neuroscience: in search of the laws of intelligenceAbstract: In just a few years, AI has transitioned from a specialized field into a transformative force for industries and society. Beyond this technical progress, the development of AI provides a new paradigm to understand the intricate workings of the human brain. To illustrate this, we will delve into a series of experiments that systematically compare deep learning algorithms with the human brain in response to images, sounds, and texts. These comparisons consistently show a partial […]
Les projections aléatoires constituent une technique de réduction de dimension simple et efficace en apprentissage automatique non supervisé. Elles reposent sur l'existence de quasi-immersions pour un ensemble de points d'un espace euclidien de haute dimension vers un espace de dimension inférieure. Nous proposerons une présentation du lemme de Johnson-Lindenstrauss centrée sur la notion de variable sous-gaussienne, puis nous discuterons de la meilleure manière de construire des projections simples, et en particulier creuses.
Cet exposé sera consacré au problème d’existence globale pour l'équation de Schrödinger non linéaire avec dérivée (DNLS). Tandis qu’une théorie satisfaisante d’existence locale pour cette équation est connue depuis un certain temps, l’existence globale pour des données grandes a résisté jusqu'à très récemment, et cela malgré le fait que l'équation soit complètement intégrable et par conséquent, admette une infinité de lois de conservation. Dans la première partie de l’exposé je présenterai le modèle, la problématique et j’introduirai des outils spectraux liés à la structure intégrable de l’équation. Dans la deuxième […]
En juin 1986, inspiré par les travaux de Drinfeld, G. Anderson publie un article fondamental intitulé « t-Motives », où il introduit les objets qui portent aujourd'hui son nom. Ce que l'on peut deviner au titre, c'est qu'Anderson y présente la contrepartie des motifs de Grothendieck en arithmétique des corps de fonctions, où Fq joue le rôle de Z. Pour autant, nulle justification n'est donnée quant au choix du nom, et je me considérerais comme un mathématicien accompli le jour où j'aurai pleinement compris cette analogie. Dans cet exposé, j'expliquerai […]
Dans une lettre à Jean-Pierre Serre datée du 16 août 1964, Alexandre Grothendieck, en spéculant sur la possibilité d’une théorie des motifs, définissait un objet qu’on appelle aujourd’hui l’anneau de Grothendieck des variétés, qui a joué un rôle de plus en plus important en géométrie algébrique dans les trente dernières années. Cet anneau est engendré par les variétés algébriques (c’est-à-dire, des objets géométriques donnés par les lieux de zéros communs de systèmes polynomiaux), regardées à isomorphisme et découpage près. Après une introduction générale de l’anneau de Grothendieck des variétés et […]