Fonctions itérées, processus de croissance et phénomènes oscillatoires
ENS (amphithéâtre Galois sous la bibliothèque de mathématique)Si on considère par exemple f(x)=1/4 +3x^2/4, il est facile de voir que six>1 alors f_n(x)=f(f(…(f(x)))) forme une suite monotone croissante vers $+infty$ à vitesse super-exponentielle. Ce qui est moins évident est le fait que cette croissance cache un phénomène périodique surprenant, mis en évidence (ou, plutôt, conjecturé) par T. Harris dans son travail fondamental sur les arbres de Galton-Watson . Ces oscillations sont très petites : on peut les observer assez aisément avec les ordinateurs dont nous disposons aujourd'hui mais une compréhension mathématique satisfaisante manque. Le même phénomène a […]