Designed and built with care, filled with creative elements

Top

Estimations de résolvante: une promenade de l’analyse classique vers le contrôle des EDP

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Il est bien connu que pour un opérateur auto-adjoint $P$, sur un Hilbert $H$, la résolvante, $(P-tau)^{-1}$ est bornée en norme sur $H$ par l'inverse de la distance du paramètre spectral $tau$ au spectre, $d( tau, sigma(P)) ^{-1} $. Cette estimation devient fausse dès que l'opérateur n'est plus auto-adjoint. L'objet de l'exposé sera de présenter quelques exemples naturels de tels opérateurs et de montrer comment des méthodes classiques d'analyse (estimations de propagation ou de Carleman en particulier) permettent de prouver des estimations de résolvantes pour de tels opérateurs. Enfin, on […]

Le modèle de copolymère (et sa limite de faible couplage)

Salle W DMA

Je présenterai le modèle de copolymère, utilisé pour décrire un polymère (composé dedifférents types de monomères) à l?RTMinterface entre deux solvants. Lorsque latempérature varie, on observe une transition de phase: à basse température, lepolymère reste proche de l?RTMinterface, alors qu?RTMà haute température, il fluctue dansun des deux solvants.On se concentrera sur la courbe critique, qui sépare les deux régimes, et enparticulier sa limite de faible couplage, dont on sait qu?RTMelle est universelle. Lavaleur de cette limite a cependant été l?RTMobjet de débats, avec des conjecturescontradictoires. Le résultat que je présenterai […]

Manin-Mumford dynamique pour les automorphismes du plan complexe.

Salle W ENS

Soit f: A^2 --> A^2 un automorphisme polynomial du plan complexe. Le problème de Manin-Mumford dynamique consiste à décrire les courbes algébriques C contenant une infinité de points périodiques de f.Dans un travail en commun avec R. Dujardin nous avons montré que lorsque f était dissipative, une telle courbe C n'existait jamais.

Anneaux noethériens valués et corps valués.

Salle W ENS

J'illustrerai, dans le cas des valuations d'Abhyankar, des méthodes d'étude des valuations utilisant la noetherianité des anneaux et conduisant à une preuve de l'uniformisation locale des valuations d'Abhyankar.

Geometric dualities and model theory

ENS Salle W

Geometries can be given in a direct semantic way, say as a complex or real manifold, or more abstractly, by their co-ordinate algebras and schemes. A duality of this kind becomes highly non-trivial in cases of schemes of arithmetic type and for non-commutative co-ordinate algebras. I will discuss these issues from model-theoretic perspective. A detailed analysis will be given to the canonical commutation relation(s) underlying quantum mechanics. Some applications will be presented.

Compter des cartes planaires (colorées)

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

On illustrera quelques principes et approches de combinatoire énumérative, en se concentrant sur les objets classiques que sont les cartes planaires. On les rencontre aussi bien en informatique (géométrie algorithmique) qu'en mathématiques (probabilités ; algèbre) et en physique théorique (gravitation quantique).On verra passer de belles formules d'énumération, des dévissages récursifs, des bijections, des séries formelles, et quelques cartes aléatoires.

La combinatoire intégrable

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

L'intégrabilité est une propriété des systèmes physiques avec un nombre suffisant de symétries, qui implique l'existence de lois de conservation, et permet souvent des solutions exactes et élégantes, avec des relations profondes à l'algèbre et la géométrie. Les problèmes posés peuvent se reformuler en termes purement combinatoires ou probabilistes, car liés à l'énumération pondérée de configurations explicites.Nous proposons ici une promenade dans le monde de cette combinatoire intégrable, offrant un point de vue sur les multiples facettes de l'intégrabilité: énumération des triangulations Lorentziennes, des cartes planaires, des matrices à signe […]

Definable types in ACVF.

ENS Salle W

Given a pair of models Kprec L of a first-order theory T, the pair is said to be stable if the following property holds: all types over K which are realized in L are definable. Marker and Steinhorn characterized stable pairs of models of o-minimal theories as pairs K prec L where K is Dedekind complete in L. In this talk we provide a characterization of stable pairs of algebraically closed valued fields K prec L. To get a flavor of the topic, different examples will be discussed and a […]

Lebesgue measure and integration theory on arbitrary real closed fields

Salle W ENS

We establish for the category of semialgebraic sets and functions on arbitrary real closed fields a full Lebesgue measure and integration theory such that the main results from the classical setting hold. The construction involves methods from model theory, o-minimal geometry, valuation theory and the theory of ordered abelian groups. We set up the construction in such a way that it is uniquely determined by data that can be formulated completely in terms of the given real closed field. We apply our integration theory to questions on semialgebraic geometry and […]

Théorie de Ramsey et dynamique topologique

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Le théorème de Ramsey affirme que si on colorie toutes les parties de taille k d'un ensemble dénombrable en un nombre fini de couleurs il y aura toujours un ensemble infini dont toutes les parties de taille k ont la même couleur. Ce théorème a inspiré toute une série de résultats du même genre -- si on coupe un gros objet en un nombre fini de morceaux il y aura toujours une grosse partie où on trouve de la structure -- qui ont trouvé des applications dans plusieurs domaines des […]