Designed and built with care, filled with creative elements

Top

Comportement en temps long d’un solide se déplaçant dans un fluide visqueux incompressible

ENS (salle W)

On considère un système décrivant le mouvement d'un corps rigide et à l'intérieur d'un fluide remplissant le reste de l'espace tridimensionnel. Nous prouvons l'existence globale de solutions lorsque les données initiales sont petites. De plus, nous donnons une description précise de leur comportement en temps grand. Notre résultat principal affirme, en particulier, que si la donnée initiale est suffisamment petite dans des normes convenables alors la position du centre de la boule rigide converge vers un point à distance finie lorsque le temps tend à infini. Ce résultat contraste avec […]

Un après-midi de sous-groupes aleatoires invariants ou stationaires

Zoom

ZOOM: https://us02web.zoom.us/j/81548053762 ID: 815 4805 3762 Mot de passe: G est un Graphe de Cayley du groupe libre à 107 générateurs. Quel est le degré de ce graphe? Tapez le numéro à trois chiffres comme un mot de passe. 15.00 - 15.45    Tsachik Gelander (Weizmann Institute), "Stationary random discrete subgroups of semisimple Lie groups" 16.00 - 16.45     Matthieu Joseph (ENS Lyon), "Allosteric actions of surface groups" 17.15 - 18.00     Yair Hartman (Ben Gurion University), "Intersectional Invariant Random Subgroups" Vous pourrez trouver les résumés sur le site du séminaire: […]

Comment utiliser une ressource naturelle: le cas de la pêche

amphi Galois NIR

Ivar Ekeland Comment utiliser une ressource naturelle : le cas de la pêche Je chercherai à montrer, dans le cas de la pêche, comment les interactions de l'humanité avec le vivant sont conditionnées par les structures sociales: ce n'est pas la même chose si les poissons sont considérés comme un bien commun, ou s'ils sont exploités dans le cadre d'un marché ou d'un monopole. L'exposé s'appuiera sur un modèle mathématique simple (Gordon-Schaefer 1954) qui a l'avantage rare d'être couramment utilisé par les scientifiques, l'industrie et les pouvoirs publics.  

Groups definable in partial differential fields with an automorphism

Sophie Germain salle 1016.

This is a joint work with Ronald Bustamante Medina and Zoé Chatzidakis. In this talk we are interested in differential and difference fields from the model-theoretic point of view. A differential field is a field with a set of commuting derivations and a difference-differential field is a differential field equipped with an automorphism which commutes with the derivations. Cassidy studied definable groups in differentially closed fields, in particular she studied Zariski dense definable subgroups of simple algebraic groups and showed that they are isomorphic to the rational points of an […]

Léonard Pille-Schneider, raconte-moi les espaces hybrides !

En salle W au DMA, ou sur Zoom

Soit X=(X_t) une famille de variétés algébriques complexes paramétrée par le disque épointé, dont les équations ont une singularité méromorphe en t=0. Le but de cet exposé est d'expliquer comment associer à cette famille un espace dit hybride, permettant de voir les variétés complexes X_t dégénérer vers l'espace analytique non-archimédien obtenu en interprétant X comme une variété algébrique sur le corps des séries de Laurent. Je donnerai aussi des applications géométriques de cette construction.

The Kemperman inverse problem

Zoom

Let G be a connected locally compact group with a left Haar measure μ, and let A,B ⊆ G be nonempty and compact. Assume further that G is unimodular, i.e., μ is also the right Haar measure; this holds, e.g., when G is compact, a nilpotent Lie group, or a semisimple Lie group. In 1964, Kemperman showed that μ(AB) ≥ min {μ(A)+μ(B), μ(G)} . The Kemperman inverse problem (proposed by Griesmer, Kemperman, and Tao) asks when the equality happens or nearly happens. I will discuss the recent solution of this […]

Not Pfaffian

Zoom

This talk describes the connection between /strong minimality/ of the differential equation satisfied by an complex analytic function and the real and imaginary parts of the function being /Pfaffian/. The talk will not assume the audience knows these notions previously, and will attempt to motivate why each of them are important notions in various areas. The connection we give, combined with a theorem of Freitag and Scanlon (2017) provides the answer to a question of Binyamini and Novikov (2017). We also answer a question of Bianconi (2016). We give what […]

NIPn fields part 2: random hypergraphs and NIPn CHIPS transfer

salle 1016 Sophie Germain

A core question in the model theory of fields is to understand how combinatorial patterns and algebraic properties interact. The study of NIPn fields, which can't express the edge relation of random n-hypergraph, is linked to henselianity. In this talk, we use Chernikov and Hils conditions to obtain transfer in some situations, that is, under some algebraic assumptions, it is enough to know that the residue field of a henselian valued field is NIPn in order to known that it is itself NIPn, and we discuss consequences on hypothetical strictly […]

Existentially closed measure-preserving actions of free groups

Sophie Germain salle 1016.

I will discuss a joint work with Alexander Berenstein and Ward Henson, in which we show that the theory of probability algebras with two automorphisms has a model completion, which moreover has quantifier elimination and is stable. We also exhibit two non-isomorphic (but approximately isomorphic) models of the model completion. More generally, we give a sufficient set of conditions for the axiomatizability (in continuous logic) of the existentially closed actions of a free group on a separably categorical, stable structure. I will also mention a number of open questions.

Sur l’effet du désordre en mécanique statistique

Salle W

L’effet du désordre sur les modèles de la mécanique statistique est souvent surprenant (et, en tout cas, peu compris). J’approcherai ce problème avec le point de vue du « critère de (A. B.) Harris » et le but serait d’arriver à présenter les idées de base et de donner un panorama de ce qu’on (ne) sait (pas) faire.

Najib Idrissi, raconte-moi les opérades !

En salle W au DMA, ou sur Zoom

Les opérades sont des objets qui gouvernent des catégories d'algèbres au sens large — par exemple, les algèbres associatives, les algèbres commutatives, ou les algèbres de Lie — qui sont habituellement définies par « opérations génératrices et relations ». Le but de cet exposé est d'introduire la théorie des opérades avec des exemples, et en particulier l'exemple fondateur des opérades des petits disques. J'expliquerai comment les opérades des petits disques permettent d'obtenir des invariants des variétés de deux façons duales : le calcul des plongements et l'homologie de factorisation.

Équations intégrodifférentielles et EDP : utilisation en biologie théorique

amphi Galois NIR

Laurent Desvillettes Équations intégrodifférentielles et EDP : utilisation en biologie théorique On montre comment certaines questions fondamentales de biologie peuvent parfois être formalisées par des équations et systèmes d'équations, puis étudiées en utilisant des méthodes d'analyse (mesures, analyse de Fourier).