Designed and built with care, filled with creative elements

Top

NSOP_1, Kim-independence, and simplicity at a generic scale

Sophie Germain salle 1016

The class of NSOP_1 theories properly contains the simple theories and is contained in the class of theories without the tree property of the first kind. We will describe a notion of independence called Kim-independence, which corresponds to non-forking independence 'at a generic scale.' In an NSOP_1 theory, Kim-independence is symmetric and satisfies a version of Kim's lemma and the independence theorem. Moreover, these properties of Kim-independence individually characterize NSOP_1 theories. We will talk about what Kim-independence looks like in several concrete examples: parametrized equivalence relations, Frobenius fields, and vector […]

Adapting to unknown noise level in super-resolution

ENS Salle W

We study sparse spikes deconvolution over the space of complex-valued measures when the input measure is a finite sum of Dirac masses. We introduce a new procedure to handle the spike deconvolution when the noise level is unknown. Prediction and localization results will be presented for this approach. An insight on the probabilistic tools used in the proofs could be briefly given as well.

Covariant LEAst-Square Re-fitting for image restoration

Salle W (ENS)

We propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for l1 regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach […]

Wild ramification and K(pi,1) spaces

ENS Salle W

I will sketch the proof that every connected affine scheme in positivecharacteristic is a K(pi,1) space for the etale topology. The keytechnical ingredient is a ?RoeBertini-type?R statement regarding the wildramification of l-adic local systems on affine spaces. Its proof usesin an essential way recent advances in higher ramification theory dueto T. Saito.

Finite descent obstruction and non-abelian reciprocity.

ENS Salle W

For a nice algebraic variety X over a number field F, one of the central problems of Diophantine Geometry is to locate precisely the set X(F) inside X(A), where A denotes the ring of adèles of F. One approach to this problem is provided by the finite descent obstruction, which is defined to be the set of adelic points which can be lifted to twists of torsors for finite étale group schemes over F on X. More recently, Kim proposed an iterative construction of another subset of X(A) which contains […]

TBA

Salle W (ENS)

Actions localement quadratiques de groupes de Chevalley, et représentations minuscules

Sophie Germain salle 1016

Un très beau théorème de Timmesfeld caractérise, sans hypothèse sur K, la représentation naturelle de G = SL(2,K) parmi les Z-modules : c'est le seul Z-module irréductible V où les sous-groupes unipotents de G agissent `quadratiquement', i.e. = 0 (en itérant les commutateurs).Montrer ce théorème, c'est essentiellement savoir reconstruire sur un Z-module quadratique une structure de K-espace vectoriel compatible avec l'action de G.L'exposé présentera une généralisation de ce théorème aux autres groupes de Chevalley simples : si G est un tel groupe, et V un Z-module sur lequel chaque sous-groupe […]

Ce que la logique peut dire sur certains groupes

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

On va étudier la relation entre groupes, géométrie, et logique dupremier ordre dans un cas simple.Les groupes qu'on considèrera seront des groupes d'isométries d'espaceshyperboliques, mais n'ayant pas d'action intéressante sur des arbres.La théorie élémentaire d'un groupe est l'ensemble (infini) de tous lesenoncés qu'il satisfait (on parle de theorie elementare car on nequantifie que sur des éléments individuels du groupe, par opposition àdes sous-ensembles, sous-groupes, morphismes...).On montrera que dans cette classe de groupes, deux groupes ont lamême théorie élémentaire si et seulement si ils sont isomorphes. 

Fields of definition and essential dimension in representation theory

ENS Salle W

A classical theorem of Brauer asserts that every finite-dimensional non-modular representation p of a finite group G defined over a field K, whose character takes values in a subfield k, descends to k, provided that k has suitable roots of unity. If k does not contain these roots of unity, it is natural to ask how far p is from being definable over k. The classical answer is given by the Schur index of p, which is the smallest degree of a finite field extension l/k such that p can […]

Groupe de Brauer invariant et obstruction de descente itérée

ENS Salle W

Pour une variété quasi-projective, lisse, géométriquement intègre sur un corps de nombre k, on montre que l'obstruction de descente itérée est équivalente à l'obstruction de descente. Ceci répond une question ouverte de Poonen. L'idée clé est la notion de sous-groupe de Brauer invariant et la notion d'obstruction de Brauer-Manin invariant étale pour une k-variété munie d'une action d'un groupe linéaire connexe.