Designed and built with care, filled with creative elements

Top

Geometric dualities and model theory

ENS Salle W

Geometries can be given in a direct semantic way, say as a complex or real manifold, or more abstractly, by their co-ordinate algebras and schemes. A duality of this kind becomes highly non-trivial in cases of schemes of arithmetic type and for non-commutative co-ordinate algebras. I will discuss these issues from model-theoretic perspective. A detailed analysis will be given to the canonical commutation relation(s) underlying quantum mechanics. Some applications will be presented.

Compter des cartes planaires (colorées)

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

On illustrera quelques principes et approches de combinatoire énumérative, en se concentrant sur les objets classiques que sont les cartes planaires. On les rencontre aussi bien en informatique (géométrie algorithmique) qu'en mathématiques (probabilités ; algèbre) et en physique théorique (gravitation quantique).On verra passer de belles formules d'énumération, des dévissages récursifs, des bijections, des séries formelles, et quelques cartes aléatoires.

La combinatoire intégrable

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

L'intégrabilité est une propriété des systèmes physiques avec un nombre suffisant de symétries, qui implique l'existence de lois de conservation, et permet souvent des solutions exactes et élégantes, avec des relations profondes à l'algèbre et la géométrie. Les problèmes posés peuvent se reformuler en termes purement combinatoires ou probabilistes, car liés à l'énumération pondérée de configurations explicites.Nous proposons ici une promenade dans le monde de cette combinatoire intégrable, offrant un point de vue sur les multiples facettes de l'intégrabilité: énumération des triangulations Lorentziennes, des cartes planaires, des matrices à signe […]

Definable types in ACVF.

ENS Salle W

Given a pair of models Kprec L of a first-order theory T, the pair is said to be stable if the following property holds: all types over K which are realized in L are definable. Marker and Steinhorn characterized stable pairs of models of o-minimal theories as pairs K prec L where K is Dedekind complete in L. In this talk we provide a characterization of stable pairs of algebraically closed valued fields K prec L. To get a flavor of the topic, different examples will be discussed and a […]

Lebesgue measure and integration theory on arbitrary real closed fields

Salle W ENS

We establish for the category of semialgebraic sets and functions on arbitrary real closed fields a full Lebesgue measure and integration theory such that the main results from the classical setting hold. The construction involves methods from model theory, o-minimal geometry, valuation theory and the theory of ordered abelian groups. We set up the construction in such a way that it is uniquely determined by data that can be formulated completely in terms of the given real closed field. We apply our integration theory to questions on semialgebraic geometry and […]

Théorie de Ramsey et dynamique topologique

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Le théorème de Ramsey affirme que si on colorie toutes les parties de taille k d'un ensemble dénombrable en un nombre fini de couleurs il y aura toujours un ensemble infini dont toutes les parties de taille k ont la même couleur. Ce théorème a inspiré toute une série de résultats du même genre -- si on coupe un gros objet en un nombre fini de morceaux il y aura toujours une grosse partie où on trouve de la structure -- qui ont trouvé des applications dans plusieurs domaines des […]

De la topologie aux corps finis: autour des conjectures de Weil

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Les conjectures de Weil, énoncées à la fin des années 1940, constituèrent l'une des motivations principales pour le travail de Grothendieck en géométrie algébrique dans les années 1950 et 1960. Ces conjectures relient des objets mathématiques vivant dans des mondes a priori très lointains: d'un côté, les nombres de solutions d'équations polynomiales dans les corps finis, et de l'autre, les invariants topologiques associés à certains objets géométriques (courbes, surfaces, variétés topologiques). Cet exposé visera à introduire les concepts en jeu et à expliquer la formulation des conjectures de Weil.

Géométrie des grandes partitions non croisées aléatoires

DMA - Salle R3 45 rue d'Ulm, Paris, France

(en collaboration avec Igor Kortchemski)Une partition de l?RTMensemble des entiers de 1 à n peut sereprésenter dans le disque unité du plan complexe : les entiers sontplacés sur les racines n-ièmes de l?RTMunité et chaque ensemble de lapartition est représenté dans le disque par le polygone convexe dont lessommets sont ses éléments. La partition est dite non croisée si cespolygones ne s?RTMintersectent pas. Dans ce cas, on s?RTMintéresse à l?RTMensemblefermé du disque formé par la réunion des arêtes des polygones. Jeprésenterai des théorèmes limites pour de tels ensembles lorsque n […]

Approximations diophantiennes de constantes classiques

ENS (amphithéâtre Galois sous la bibliothèque de mathématique)

Il existe de nombreuses constructions explicites de suites de nombres rationnels qui convergent plus ou moins vite vers l'une ou l'autre des constantes classiques en mathématiques, telles que pi, exp(1), les valeurs de la fonctions zêta de Riemann aux entiers, la constante d'Euler ou les valeurs de la fonction Gamma d'Euler. Il s'avère beaucoup plus difficile de construire des suites d'approximations diophantiennes, c'est-à-dire des suites de nombres rationnels qui permettent de démontrer l'irrationalité de ces nombres. Je présenterai quelques méthodes permettant de le faire pour certains d'entre eux.