Designed and built with care, filled with creative elements

Top

Sur les sections des familles d’hypersurfaces de grand degré

amphi Perrin en face de l'IHP

Grauert et Manin ont montré qu'une famille non-isotriviale de courbes compactes hyperboliques n'a qu'un nombre fini de sections. Nous montrerons un analogue pour une famille nonbirationnellement isotriviale d'hypersurfaces de grand degré et de grande variabilité d'un espaceprojectif complexe : il existe un fermé strict de l'espace total qui contient l'image de toutes les sections.

Plongements d’espaces homogènes sphériques sur un corps quelconque

Salle W

On étend la définition des espaces homogènes sphériques et de leurs plongements au cas d'un corps quelconque. On montre qu'à un plongement d'un espace homogène sphérique fixé X, on peut associer un éventail colorié stable par le groupe de Galois. On présente des exemples où cette correpondance est parfaite.

Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus d’une courbe

Salle W

Soit X une variété projective lisse sur in corps de nombres, fibrée au dessus d'une courbe C, à fibres géométriquement intègres. En supposant que les fibres d'un sous-ensemble hilbertien généralisé satisfont le principe de Hasse (resp. l'approximation faible) et la finitude du groupe de Tate-Schafarevitch de la jacobienne de C), on montre que l'obstruction de Brauer-Manin provenant de la courbe d'en bas est la seule au principe de Hasse (resp. à l'approximation faible) pour les zéros-cycles de degré 1 sur X.

L’obstruction de Brauer-Manin pour les points entiers des courbes

Salle W

Dans ce travail en collaboration avec J.F. Voloch, on discute si l'obstruction de Brauer-Manin est l'unique obstruction au principe de Hasse pour les points entiers d'une courbe affine hyperbolique C.Dans le cas où C est rationnelle, on conjecture une réponse positive et on montre que cette conjecture admet plusieurs formulations équivalentes et on la relie à une conjecture de Skolem. Dans le cas d'une courbe elliptique épointée, on montre qu'une variante plus forte (i.e. avec des congruences locales) de la question admet une réponse négative.

Une remarque sur les courbes de Reichardt-Lind et de Schinzel

Salle W

Les courbes de Reichardt-Lind et de Schinzel sont des exemples classiques de courbes projectives et lisses sur Q possédant un point adélique mais pas de point rationnel. Je montrerai que leur groupe fondamental arithmétique n'admet pas de section au-dessus du groupe de Galois absolu de Q. Cela répond à une question de Stix et confirme, dans le cas de la courbe de Schinzel, la prédiction fournie par la conjecture des sections de Grothendieck.

Une majoration explicite du nombre des points rationnels dans une variété arithmétique

J'explique l'approche de la gémométrie d'Arakelov dans les majorations uniformes des nombres de points rationnels de hauteurs bornées dans les variétés arithmétiques de degré et dimension fixés dans un espace projectif. Cette approche permet de trouver des majorations explicites, qui sont utiles dans l'étude des points de petite hauteur.

Propriété de Hilbert-Grunwald et théorie inverse de Galois

salle W sous les toits

Notre résultat principal combine une conclusion de typeGrunwald-Wang pour les groupe arbitraires, une version effective duthéorème de Hilbert et le problème inverse de Galois (travail commun avecPierre Dèbes).

Cohomologie log plate, actions modérées et structures galoisiennes

Les structures galoisiennes dont il est question ici décrivent lastructure de module sous-jacente à l'action d'un schéma en groupes(commutatif) fini et plat sur un schéma. Quand l'action est modérée(dans un sens que nous préciserons), le module obtenu est projectif.Nous montrerons comment l'utilisation des log schémas permet deréinterpréter certaines actions modérées en termes de torseurs pourla topologie log plate définie par Kato. Pour finir, nous donneronsdes applications à l'arithmétique des variétés abéliennes.

Dimension essentielle des tores

Salle W

Je présenterai d'abord une brève introduction à la théorie de la dimension essentielle quiest une mesure de complexité des certaines structures algébriques, par exemple destorseurs d'un groupe algébrique. Je discuterai ensuite la dimension essentielle des torseurs d'un tore algébrique

Canonical dimension of algebraic tori

Salle W

Canonical dimension is a numerical invariant of algebraic varieties X over a field F, that measures how far X is from having a F-rational point. This concept has been introduced in 2005 by G. Berhuy and Z. Reichstein, and was recently presented at ICM 2010 by N. Karpenko. In the first part of the talk I want to give you an idea of canonical dimension and to show how it is related to essential dimension. In the second part I will present a general result on canonical dimension, where the […]